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Abstract

Effective evacuation of residents in hurricane affected areas is essential in reducing the over-
all damage and ensure public safety. However, traffic flow patterns in evacuation contexts is far
more complex than normal traffic and is usually accompanied with severe congestion due to the
presence of evacuees. In such scenarios, agent-based simulation can accurately capture evacuation
traffic patterns, which can be extremely useful in evacuation management. However, existing sim-
ulators are not fully capable of simultaneously handling highly detailed household behaviors as
well as large-scale traffic in evacuation contexts. In this study, we develop a parallelizable large-
scale version of A-RESCUE (An Agent based regional evacuation simulator coupled with user
enriched behavior) called A-RESCUE 2.0. Detailed household evacuation behaviors are modeled
using a comprehensive decision making module. Computation loads induced by the large amount
of evacuation vehicles are distributed by a parallelization scheme that involves partitioning the
road network into subnetworks such that traffic updates in each subnetwork are simultaneously
updated in parallel. Dynamic load balancing among different subnetworks is ensured by period-
ically repartitioning the network using a multi-level graph partitioning algorithm. A predictive
network weighing scheme is developed that assigns weights (reflecting computational load) to the
roads of network based on current and predicted future network traffic loadings. An on-demand
routing strategy is also developed that allows effective rerouting computation based on chang-
ing traffic patterns. A-RESCUE 2.0 is capable of representing non-evacuee background traffic
as well as uncertain events on the network like road closures. In addition, real-time monitoring
of traffic patterns is made possible using a visualization module that is connected to the simu-
lator through an efficient data communication layer. Comprehensive experiments are conducted
on Miami-Dade county network to validate the applicability of developed simulator on real-world
networks. Findings from experimental tests confirm that parallelization scheme is effective in
improving computational performance.

Introduction

Hurricanes are among the mostly costly and dangerous natural disasters in the United States. In 2012,
Hurricane Sandy caused 147 direct casualties along its path and brought damage in excess of $50 billion
for the United States (Blake et al., 2013). Other direct impacts of Sandy include destruction of 570,000
buildings, cancellation of 20,000 airline flights, 8.6 million power outages in states among others. These
disastrous experiences have compelled various stakeholders such as emergency managers, crisis planners
and researchers to uncover the critical role of evacuation logistics. However, effective evacuation
planning is highly dependent on understanding the traffic patterns of evacuees. Development of an
evacuation strategy for populations at risk from natural disaster is often problematic due to unstable
and hectic traffic conditions that accompany a natural disaster. Traditional static modeling tools
are not sophisticated enough to accommodate realistic scenarios that include dynamic conditions and
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varying evacuee response rates typically found in an evacuation. Due to these reasons, traffic evacuation
simulators provide the right tools to model evacuation traffic patterns.

There has been a considerable amount of work in simulating traffic during evacuation. Some of
the prominent works include NETVAC (Sheffi et al., 1980), TEDSS (Sherali et al., 1991), IMDAS
(Franzese, 2001), OREMS (Rathi and Solanki, 1993), MASSVAC (Hobeika and Jamei, 1985; Hobeika
and Kim, 1998) and CEMPS (Pidd et al., 1993). The limitations of these works are that they are
specific to certain particular evacuation scenarios. For instance, TEDSS is specially designed for
evacuating people around nuclear power stations and macroscopically simulates evacuation scenarios
without going into microscopic details. OREMS does macroscopic traffic simulation using static traffic
assignment, and thus, is not a good representation of dynamic evacuation flows. MASSVAC requires
evacuation routes to be provided as input from all origins to destinations. CEMPS copes well with
rectangular grid-type road networks but has not been tested for general road networks. Also, travel
time of vehicles across network links in CEMPS is considered to be independent of congestion, which
is not realistic.

Recently, some of the dynamic traffic simulation frameworks like such as INTEGRATION (Mitchell
and Radwan, 2006), PARAMICS (Cova and Johnson, 2003), CORSIM (Williams et al., 2007), VISSIM
(Han and Yuan, 2005), MITSIMLab (Jha et al., 2004), DYNASMART (Murray-Tuite, 2007), DynaMIT
(Balakrishna et al., 2008), DynusT (Noh et al., 2009) and INDY (Klunder et al., 2009) have also been
used to study evacuation problems. However, the aforementioned frameworks either use macroscopic
traffic flow models, which lack sufficient precision in capturing traffic details, or are restricted to
small-scale simulation that are not capable of handling large number of agents. Therefore, there is an
urgent need to develop high fidelity evacuation frameworks that are scalable for large-scale city-wide
agent-based simulations.

Agent-based simulation is a class of computational methods to model systems composed of in-
teracting autonomous agents situated in an artificial environment (Macal and North, 2005). These
autonomous agents are self-directed with the capability of making decisions and reacting to the envi-
ronment. Many agent-based frameworks have been developed in recent years, such as SUMO (Soares
et al., 2013), MATSim (Balmer et al., 2009), TRANSIMS (Smith et al., 1995), FLAMEGPU (Rich-
mond, 2011), D-MSAON (Luke et al., 2005), ParamGrid (Klefstad et al., 2005), SMARTS (Ramamo-
hanarao et al., 2016) and A-RESCUE (Ukkusuri et al., 2017). Frameworks like TRANSIMS (Smith
et al., 1995) use primitive traffic flow representations such as cellular automata technique, which lack
sufficient realism. In addition, a few existing agent-based frameworks like FLAMEGPU (Richmond,
2011) do not have a well-developed message passing scheme, which cannot capture complex interac-
tions between agents. Some of these frameworks do not support distributed computing, such as SUMO
(Soares et al., 2013), A-RESCUE (Ukkusuri et al., 2017). Frameworks like ParamGrid (Klefstad et al.,
2005) that support distributed computing only divide computational load on the traffic network based
on equally sized spatial regions without balancing actual load across the traffic network. SMARTS
(Ramamohanarao et al., 2016) divides computation based on actual but static load on the traffic net-
work and restricts the movement of vehicles to pre-defined routes. Therefore, vehicles are not allowed
to choose adaptive routes based on varying traffic conditions. A-RESCUE (Ukkusuri et al., 2017)
considers adaptive routing but computation slows down significantly under large number of vehicles
due to lack of parallelization and an inefficient visualization interface (VI) module.

Table 1: Comparison of A-RESCUE 2.0 with other simulators

Feature SUMO TRANSIMS VISSIM MATSIM ParamGrid SMARTS A-RESCUE
A-RESCUE

2.O
Distributed computing No Yes No No Yes Yes No Yes
OpenStreetMap road

data
Yes No No Yes No Yes Yes Yes

Dynamic load balancing No No No No No No No Yes
Continuous spatial

automation
Yes No Yes Yes Yes Yes Yes Yes

Add-on visualization
module connected

though WebSockets
No No No No No No No Yes

In this paper, A-RESCUE 2.0, a large-scale, parallel, agent-based traffic simulation framework for
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hurricane evacuation using the Repast Simphony toolkit (North et al., 2005) is developed. Table 1
shows major differences between A-RESCUE 2.0 and other simulators. The agents in our simulator are
as follows: 1) vehicles are agents as they have complex driving behavior: lane changing, car-following,
routing and 2) roads are also agents since we can model complex changing behaviors: lane closure,
change of speed limit due to background traffic, connectivity to other roads. Also, detailed household
evacuation behaviors are modeled using a comprehensive evacuation decision making module, which
allows realistic characterization of city level evacuation demand patterns. We use a high fidelity micro-
scopic car-following model and a lane changing model to capture detailed traffic flow characteristics.
The relevance of evacuation scenario in developing this simulator is that many evacuees depart by
the time evacuation warning is issued (Lindell et al., 2005). It has also been observed that there
is synchronization in the departure of people and many people evacuate during a particular period
(Wolshon, 2002). During this period, congestion on road networks increases. Simulation of heavy
traffic during these times significantly reduces down the computational performance of existing evac-
uation simulators. In order to improve the computational performance of simulator a parallelization
scheme is introduced. Parallelization is achieved by partitioning the traffic network into subnetworks
such that traffic updates within each of the subnetworks is simultaneously updated in parallel by a
Java thread. The partitioning of the network is achieved through a multilevel network partitioning
algorithm called Metis (Karypis and Kumar, 1995). The implemented network partitioning algorithm
is very efficient and provides high quality partitions, which boosts the parallel performance of the
simulation framework. However, traffic patterns across road networks continuously change over time,
leading to frequent changes in loads distributed to various subnetworks. In order to ensure equal load
distribution, A-RESCUE 2.0 handles dynamic load balancing by periodically repartitioning the traffic
network into sub-networks such that each sub-network has approximately the same computational load
and communications between different partitions are minimized. While repartitioning the network, the
simulator takes into account both current as well future load (till next repartitioning period) in the
traffic network through a predictive network weighing scheme. In addition, A-RESCUE 2.0 allows
adaptive routing of vehicles so that vehicles can change their paths as conditions vary across the net-
work. Note that these uncertain conditions, like traffic jams, are common in evacuation scenarios. The
simulator provides an event handling scheme that supports uncertain events like road closures. Thus,
A-RESCUE 2.0 simulates real world conditions of roads jams and subsequent strategic rerouting by
vehicles.

In addition, an efficient visualization interface (VI) module is developed as an add-on component,
which can run on a separate machine. This module queries data from the simulator and does not
slow down simulation. The visualization module is connected to simulation through efficient data
communication via WebSockets (Wessels et al., 2011). Note that the existing agent-based frameworks
like A-RESCUE use a built-in VI module, that is not capable of visualizing large scale simulations.
Our proposed simulation framework overcomes this limitation. In short, this paper makes the following
contributions:

1. A high-fidelity, agent-based, parallel traffic simulation framework is developed that distributes
computational load by periodically repartitioning road network into various sub-networks.

2. A predictive network weighing scheme is developed that allows dynamic load balancing across
different network partitions.

3. An adaptive on-demand routing scheme is developed that allows efficient routing of vehicles
based on changing traffic conditions.

4. Background traffic and event handling schemes are incorporated for representing non-evacuee
traffic and dynamic events like road closures, respectively.

5. An efficient VI module connected to simulator through a high-fidelity network connection pro-
vides real-time monitoring of traffic conditions.

6. Computational experiments are conducted to test the applicability of proposed framework on a
real-world network.
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7. Developed a high fidelity evacuation framework that can conduct analysis on both large-scale
city (macro) level and individual household (micro) level at the same time.

This study is organized as follows. The next section presents the simulation framework in detail.
Then, experimental results on the developed simulator are presented. The final section summarizes
important findings from the research and presents future directions.

Simulation Features

This section presents the details of A-RESCUE 2.0. First, the overall framework of the simulation
model is introduced. Details of the components will be described in later sections.

Framework of the agent-based simulation model

Figure 1 illustrates the overall framework of A-RESCUE 2.0. The framework is an integration of
household level behavioral models, detailed traffic networks and background traffic patterns with high
fidelity traffic flow models to capture the complexity of hurricane evacuation.

HDM module

    Evacuation vehicles
Origin, Destination

 and Departure time

Demand side input Supply side input Background traffic

Agent-based traffic simulator

Input network

Shape files of roads, 

zones and lanes

Uncertain events

Blocked roads and 

their blocking times

Traffic flow module

· Vehicle generation and loading

· Car-following model

· Lane-changing model

Visualization

Data communication

Data modelling 

on network data

Parallelization and dynamic 

load balancing  
· Thread generation

· Network partitioning

· Adaptive repartitioning scheme

· Predictive network weighing 

scheme

Adaptive routing module

· Routing algorithms

· On-demand routing scheme

Figure 1: Simulation framework

The simulation framework uses three different types of input information, namely, demand side
input, supply side input and background traffic to encode all information needed to perform simula-
tion. The demand side input uses household behavior models that fuse various information sources
to predict the number of evacuation agents and their detailed evacuation behavior (e.g. departure
time and destination). Behavior models take into account the effects of personal and social relations

4



surrounding households that impact their information access and decision-making, households’ infor-
mation gathering from social media, hurricane characteristics, people’s perception towards hurricane
threat etc. Note that we assume that evacuation decision is made at the household level. There has
been much evidence in the literature (Hasan et al., 2010; Mesa-Arango et al., 2012; Sadri et al., 2014)
that many evacuation related decisions happen at the household level. Dash and Gladwin (2007)
concluded that factors such as presence of children or elderly persons in the household play important
roles in evacuation decision making. These factors can encourage or restrain evacuation of an individ-
ual depending on the situation. For example, the presence of children in the household may influence
parents to protect them from danger through evacuation, yet the presence of a disabled person may
hinder their ability to take the essential steps for evacuation. In addition, it has been documented
in the evacuation literature that decisions like evacuation destination are decided considering whether
all household members (including any medical patients or pets) would be accepted or not at the cho-
sen destination (Lindell et al., 2005). Supply side input provides the high quality traffic network data
which is preprocessed using a data modeling step. Supply side uncertainties, such as disruptions on the
network (e.g. road closure) can also be incorporated using an event handling scheme of the simulation
model. The last type of input is the background traffic information. Background traffic represents
local traffic generated due to the movement of non-evacuees. In our platform, the background traffic
data is collected through Google Maps API (Svennerberg, 2010).

Once all the inputs are available, the simulation platform simulates the movement of vehicles on
the road network. This movement is governed by car-following and lane-changing rules. An adaptive
vehicle routing scheme routes vehicles based on varying traffic patterns with the minimum compu-
tation cost. Due to the nature of microscopic simulation, the amount of computation involved in
running the simulator can become very expensive as the number of vehicles increase. A parallelization
strategy is developed where the network is partitioned into different subnetworks such that traffic
updates corresponding to each subnetwork are updated in parallel by a separate thread. Since traffic
patterns continuously change across the network, a dynamic load balancing scheme is developed to
ensure approximately equal computational load across different subnetworks. This scheme periodically
repartitions the network into different partitions taking into account both current and future loads till
next repartitioning period. Empirical experiments show that this scheme is scalable and capable of
handling large-scale hurricane evacuation simulation.

The VI module of A-RESCUE 2.0 is designed as a separate add-on module. The vehicle movements
are transferred from simulator to VI module using a network data communication component. This
design can allow the VI module to run on a separate machine, which reduces the computation and
memory consumption on the simulation machine. The details of data communication implementation
and VI module would be provided later.

Input and data modeling

The simulation platform requires a high quality GIS road network map as input. It is crucial that
the network of the simulator represents the real-world traffic condition well. A pre-processing module
called data modeling (DM) takes a road network shapefile as input and generates an accurate lane-
based network file that is required for the simulator and for our VI module. The first part of our DM
module is developed in Visual Basic as an add-on for ArcMap. The main functionality of the DM
module can be summarized as follows.

1. Lane-offset: Most of the existing GIS road shapefile data only contains information at the link
level, while the number of lanes is an attribute of one particular link. In order to capture
realistic lane-changing behaviors in the network, a detailed lane-based network with accurate
lane connectivity information is needed. The lane-offset function is therefore introduced to build
a lane-based network from the link shapefile. An example of lane-offset is given in Figure 2. The
link object in the example is bi-directional and has 2 lanes in each direction. The lane-offset
function results in 4 lane objects of unique IDs, and their topology is inherited from the link
connectivity in the original shapefile. In our simulation, the vehicle routing is still conducted
on the link level, and the corresponding lane to drive on will be assigned to the corresponding
vehicle depending on the direction it heads to. The vehicle traveling towards right direction
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will use lane 10013 for straight and left turning movements, and lane 10014 for right turning
movement in this example.

2. Lane connectivity:. After offsetting the lanes, the next task is to define the connectivity of
offset lanes to ensure proper vehicle movements at each intersection. We developed rules to
automatically assign downstream and upstream lanes for each offset lane based on network
topology. In particular, if there are more than three lanes, the right-most lane will be used as a
dedicated right-turning lane and the left-most lane will be used as a dedicated left-turning lane.
Otherwise, a lane will represent both straight and left/right turning lanes.

3. Error diagnostic: Note that the raw road network shapefile may have erroneous connectivity and
attribute information for certain links and nodes. So, an error diagnostic tool to automatically
filter out potentially erroneous nodes and links is developed. This includes filtering out nodes
with more than 5 links, links that are not connected to other parts of the network, and links
with impractical geometry shape. These mistakes are corrected before going through the DM
procedure, which ensures that the output network is perfectly functional for our simulator.

Bi-directional 

Link (4 Lanes)

Lane Object (id=10012)

Lane Object (id=10013)

Lane Object (id=10014)

Lane Object (id=10011)

Link Object (id=1001) for Vehicle Routing

Figure 2: Lane-offset for a bi-directional link (number of lanes is 4)

Besides preparing the input network for our simulator, the other step of our DM module is to
prepare the OpenStreetMap (OSM) file for our VI module that is consistent with the input of our
simulator. The framework of input preparation for VI module is presented in Figure 3. We first
extract the raw OSM file from the OSM server with predefined bounding box (corresponding to the
study area). This file contains multiple layers as shown in the PostGIS database section in Figure 3.
The OSM file may have very different roadway information as compared to the input of our simulation,
as it is generated from different data source. In order to deliver a consistent visualization, the existing
roadways of the OSM file are further replaced with the generated shapefile for the simulator. This
gives the final OSM file that is used for our VI module.

Household decision making module

The household decision making (HDM) module is an important component in A-RESCUE 2.0. The
households located in the area under hurricane threat often make multiple decisions for their evacu-
ation. Our HDM module is build upon several recent studies (Ukkusuri et al. (2017), Hasan et al.
(2010), Mesa-Arango et al. (2012), Sadri et al. (2014), Murray-Tuite and Wolshon (2013), Hasan et al.
(2013)) that examine realistic household evacuation behavior and evacuation-related factors, such as
hurricane trajectory and evacuation warning influence. The HDM module considers five main decisions
that households make: (1) whether to evacuate, (2) accommodation type selection (friends/relatives
homes, public shelters or hotels), (3) evacuation destination (the specific destination), (4) evacuation
mode (auto-based evacuation or carpooling) and (5) departure time. First, the decision of a household
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Figure 3: Overall framework for preparing input file for the VI module

to evacuate was modeled using a random parameter binary logit model (Hasan et al., 2010). Some of
the variables that were found to be significant in this model are age, education status, income level,
household characteristics etc. After this, accommodation type and evacuation destination are modeled
using logit models (Mesa-Arango et al., 2012). Variables like household geographic location, income,
preparation time, changes in evacuation plans, race etc., were found to be significant in influencing
this decision. Next, mode choice is modeled using a nested logit model (Sadri et al., 2014) depending
on whether the household owns vehicles. If not, they are assigned as a passenger to be picked up by a
family member, friend etc., or to transit. If the household owns vehicles, the number of vehicles used
is determined from a truncated model. In mode choice model, variables like gender, marital status,
number of aged people in household, previous hurricane experience etc. were found to be significant.
Finally, we model departure time using a hazard based duration model (Hasan et al., 2013). Here,
variables like geographic location, whether received an evacuation notice, education status, income
level, race etc. were found to be significant. The outputs from HDM module for each household is a
schedule for evacuation trip. Each trip is described by an origin, destination, departure time. This trip
information is an input to the simulator, based on which vehicles are generated and assigned into the
traffic network. Note that these behavioral models are validated using the data from Hurricane Ivan
including the households from Alabama, Louisiana, Florida and Mississippi (evacuate/stay decision,
number of household vehicles used), and data from a behavioral-intention survey for Miami (accom-
modate type, evacuation destination, mode assignment for non-personal vehicles, departure time for
the ultimate evacuation trip, activity participation and scheduling (Ukkusuri et al., 2017).

Traffic flow module

The traffic flow (TF) module is another important component in our simulation model which mimics
the movement of vehicles on the traffic network. The TF module is implemented in three components.
The first component involves the creation and loading of vehicles. After this, vehicle movements are
simulated using car-following and lane-changing models for traveling across the network.
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Vehicle generation and loading

Vehicles are generated based on the output of the HDM model. Once vehicles are generated they are
stored in a pre-trip first-in first-out (FIFO) queue that sorts the vehicles based on increasing departure
time i.e., vehicles that depart early are placed at the top, before vehicles that depart late. The entrance
road link for a vehicle is the one that is nearest to the household location. Before entering the network,
vehicles check for the availability of adequate leading spaces in the entrance road links. If adequate
leading space is not available then vehicles wait in the queue for a later simulation step. The initial
position and speed of the vehicles are determined based on vehicles’ desired speeds, simulation step
size and prevailing traffic conditions. Once a vehicle successfully enters the network it is removed from
the pre-trip queue of the entrance link.

Car-following model

The car-following model governs how vehicles follow one another on a roadway. Our simulation frame-
work implements the car-following model developed by Yang et al. (2000). The acceleration of a
vehicle is determined based on its relationship with the leading vehicle. This relationship is a function
of the headway with the leading vehicle. There are three regimes, depending on the magnitude of
headway: free-flowing, car-following and emergency decelerating (Herman et al., 1959). Once accel-
eration/deceleration rate is computed using the car-following model, the vehicle’s speed and position
are updated at each simulation tick. See Ukkusuri et al. (2017) for the details of various regimes of
car-following model.

Lane-changing model

Lane changing behavior has significant impact on traffic flow and thus affects network congestion level.
Our implementation is based on the lane changing model developed by Yang et al. (2000) and Gipps
(1986), which consider two types of lane changing behavior: 1) Mandatory lane changing (MLC): this
arises when vehicle needs to change the lane to get into correct lane to cross over an intersection and
2) discretionary lane changing (DLC): this arises when a vehicle decides to move to a different lane
with better perceived traffic conditions. MLC has priority over DLC and therefore MLC is mainly
practiced in the region closer to the downstream junction. We implement MLC in the half of road
that is closer to downstream and DLC in the remaining half. Note that for both MLC and DLC, the
lane changing vehicle checks its gap distance from the leading vehicle as well as its gap distance from
the lagging vehicle in the target lane. Only when these gap distances are greater than a predefined
minimum distance, can the vehicle change lanes (Ahmed, 1999).

Adaptive routing module

An adaptive routing scheme has been implemented that considers updated traffic pattern across the
network. Note that link travel times are periodically updated across the network to consider time
varying traffic conditions. At every tick of the simulation, all the vehicles need to perform routing
check if travel times have changed since the last time when routing was performed. If so, they seek
for new travel paths using a routing algorithm. In A-RESCUE 2.0, two routing algorithms have been
developed: shortest path and stochastic k-shortest path algorithms. For both the algorithms, threads
safe libraries have been used to consider the possibility of multiple vehicles (belonging to different
partitions) simultaneously running routing algorithms. Once routes are obtained, all the vehicles store
their paths until link travel times are again updated.

Routing algorithms

In the simulator, two routing algorithms are implemented. The first algorithm is the shortest path (SP)
algorithm that computes the path with lowest travel time from one node to another node. Thus, route
decision in SP is deterministic. The other algorithm is known as K shortest paths (KSP) algorithm
that computes K paths that have lowest travel times from one node to another. A vehicle chooses path

8



i with probability pi determined by a logit based function that assigns higher probability to a path
that has lower travel time, ψi:

pi =
exp (−θψi)∑
i exp (−θψi)

where θ is a travel time weighing factor. Due to computation of multiple paths in KSP in comparison
to single path computation in SP, routing through KSP is computationally move expensive than SP.

Low cost on-demand routing scheme

An on-demand routing scheme is implemented to minimize the overall routing computation in simula-
tion. Whenever a vehicle reaches a junction, it checks if travel times have changed since the last time
when routing was preformed. If travel times change, the vehicle recomputes path from the current
junction to destination using one of the routing algorithms based on the updated travel times and
stores this path. Otherwise, the vehicle chooses the next link based on the stored path. As routing is
only preformed when necessary and stored routes are used until the network condition is refreshed, it
is termed as on-demand routing. Note that a vehicle having reached an intersection may not be able
to instantly travel along the updated route because of the restrictions on choosing the next link due
to the current lane of vehicle. In that case, vehicle chooses the next link based on the old route and
travels along an updated route thereafter.

Parallelization and dynamic load balancing

Since the amount of computation of simulation can significantly increase when the number of vehicles
is large, a parallelization strategy is introduced to enhance the computational performance of A-
RESCUE 2.0. The traffic network is partitioned into various subnetworks such that traffic updates
within each of the sub-networks are simultaneously computed in parallel by a Java thread. Properly
balancing the computational load across sub-networks is essential to achieve the best parallelization
performance. Therefore, the simulator uses a dynamic loading balancing strategy that periodically
repartitions the road network into sub-networks with approximately equal computational load using a
predictive network weight scheme. The following subsections present the thread generation, network
partitioning and load balancing schemes in detail.

Thread generation

A-RESCUE 2.0 implements a Java Thread pool to efficiently manage parallel threads and reduce
computation overhead due to thread creation and destruction. A thread pool is a fixed group of
threads that constantly waits for computation jobs to execute. The idea is to have the threads always
existing to reduce computation overhead due to thread creation and destruction. At every simulation
tick, each thread is assigned to a particular network partition, and updates vehicle movements on all
roads in the network partition.

Network partitioning

The road network is partitioned every network repartitioning period, Tpart, based on the weights of
the computation load graph. The computation load graph is a weighted graph, with weights on nodes
and edges approximating the computational load. More details related to the computation load graph
are presented later. The network partitioning is performed using an existing Java implementation
of the Metis algorithm called GMetis (Pingali et al., 2011). Metis is an efficient multi-level network
partitioning algorithm, which is widely used for balancing load on distributed computing tasks. The
main objective of Metis is to partition the network into a set of partitions, such that each partition
has approximately equal total node weight and in-between partition communications (total weights on
the boundary edges) are minimized. Metis partitions the network using a three-stage process (Karypis
and Kumar, 1995). The network first collapses a local cluster of connected nodes into a contracted
node, hence coarsen the origin network to a much smaller graph. Next, a series of bisections of the
coarsened graph are performed to obtain the desired number of partitions based on the weights of
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contracted nodes. Finally, partitions are projected back towards the original graph (finer graph), and
gradually refining each partition towards the partitioning objective (equal node weights and minimum
boundary edge weights). For a more detailed description of Metis algorithm, the readers can refer to
Karypis and Kumar (1995), Pingali et al. (2011).

On completion of the GMetis algorithm, the road network is divided into various partitions, where
each road belongs to one of the categories: in-partition road or boundary road. In-partition roads
are roads whose both upstream and downstream nodes belong to the same partition of network and
boundary roads are roads whose upstream and downstream nodes belong to different partitions. The
partition assignment for boundary roads is sequentially performed by merging each road to the neigh-
boring partition with lower total edge weight, which ensures the computational load of each partition
remains approximately equal.

Adaptive repartitioning scheme

An efficient repartitioning scheme is implemented that considers dynamically changing traffic condi-
tions. Repartitioning of the network is scheduled every fixed interval of time (Tpart), but the actual
repartitioning is executed only when the number of vehicles in the network is above a threshold, Nmin.
The idea behind is that if the amount of traffic on the network is low, then the computational load as
well as the amount of variation in the partitioning weights as compared to the previous repartitioning
period would be low. Thus, repartitioning computation could be saved by simply using the previous
network partitioning. To avoid prolonged periods of non-partitioning, a maximum duration (Tmax) is
introduced to implement network repartitioning using the most recent traffic condition.

Predictive network weighting scheme

To partition the traffic network into subnetworks/partitions with approximately equal computational
load, the computational load in the traffic network within the future time period (till the next repar-
titioning period) needs to be predicted. The prediction is performed on a computation load graph,
where edges are the roads and nodes are the intersections. The computation load graph is a weighted
graph, with weights on nodes and edges approximating the computational load. The main computa-
tion on vehicles’ movement update can be decomposed to two parts, which are 1) car-following and
lane changing updates and 2) routing computation. The routing computation is more costly compared
to the car-following and lane changing updates. Therefore, computational loads on roads (represented
as edge weights) is estimated as the sum of three components: number of current vehicles on the
roads (denoted as Nc), predicted number of vehicles that would be traveling on the road until the next
repartitioning period (denoted as Nt) and the predicted number of vehicles that would perform routing
on the road until the next repartitioning period (denoted as Nr). The following equation represents
the weight of an edge:

We = αNc + βNt + γNr (1)

where α, β and γ are scale parameters for different components. Nc can be easily obtained by counting
the number of vehicles on each road. The computation of Nt and Nr involves future prediction, which
are estimated based on the current route of each vehicle and network travel times based on the most
recent network condition. The following procedure is used for computing these two terms:

1. Predicted number of vehicles that would travel the road until the next repartitioning period
(Nt): For each vehicle, up to Nlookup (a predefined threshold) downstream reachable roads on
the vehicle’s current route are tracked. Reachability is examined by computing the cumulative
travel time starting from the current road. If the cumulative travel time on a downstream road
segment is smaller than the length of the repartitioning period Tpart, the count Nt will increment
by 1 on that road segment. Nt is an approximation of car-following and lane changing updates’
computational load in the next network repartitioning period, as road travel times and vehicles’
routes are based on current network traffic condition.

2. Predicted number of vehicles that would perform routing on the road until the next repartitioning
period (Nr): The routing computation is very costly compared to car-following and lane changing
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updates. Knowing where routing computation occurs is important to accurately capture com-
putational load associated with routing. Similar to Nt computation, up to Nlookup downstream
reachable roads are tracked using cumulative travel time starting from current road. However,
only those roads for which cumulative travel time exceeds an integral multiple of network refresh
period Tref (Tref ≤ Tpart) are considered, and then road’s Nr is incremented by one. This is
because routing is performed after every time the network is refreshed. The maximum possible
future routing roads of a vehicle is equal to bTpart/Trefc. Once this procedure is performed for
every vehicle, the Nr value for each road in the network is obtained.

Both Nt and Nr are approximations of car-following and lane changing updates’ loads as well as
the routing computational loads. This is because that road travel times and vehicles’ routes are based
on current network traffic condition rather than actual future network traffic conditions. Moreover,
finding the proper values of the scale parameters α, β and γ for Nc, Nt and Nr is important to
accurately estimate the computational load. In our simulation model, the scale parameters α, β and
γ are determined by a series of parameter tuning experiments. The details of these experiments are
presented later. After edge weights are computed, node weights are computed as follows:

Wn =
1

2

∑
e′∈Γ(n)

We′ (2)

where Γ(n) represents the set of adjacent edges (roads) of node (intersection) n.

Background traffic and event handling

Background traffic represents local traffic generated by non-evacuees. Inclusion of background traffic
makes A-RESCUE 2.0 more reliable and robust. City-scale background traffic states are included in
terms of hourly link travel times in the traffic simulator. We utilize Google Maps Directions API
to extract road travel time data by querying travel times between road starting and end locations
on Google Map. We collected hourly travel times of more than 4,000 roads in the study region
for a normal day (i.e. a day not experiencing a hurricane event). In future, a similar dataset for
a day during hurricane events will be collected to reflect real background traffic. Figure 4 shows
the three main steps of the inclusion of background traffic into simulation platforms, including data
collection and periodically refreshing road free flow speeds using the hourly travel speed observed in
the background traffic. Moreover, background traffic update on a road will be overridden if there is
an event simultaneously occurring on the road (e.g. road closure, which sets the road free flow speed
to 0).

An event handling scheme is also developed that can simulate events like road closure, which is
useful to simulate disruptions on road network during hurricanes. The input to the scheme is the list
of events with their starting and ending times. In the beginning of the simulation, all the events are
loaded into a queue. At each time interval new events that need to be started are checked from the
queue and are put in a different queue containing running events, which is sorted in the increasing
order of ending times of events. The finished events are removed from the running events queue at
their ending times. When an event is activated, the road corresponding to the event is found and the
event is executed. If an event is deactivated at its ending time, then original status (e.g. free-flow
speed of the road) is restored.

Data communication

The simulator and VI module are remotely integrated via a network communication layer built upon
the widely-known and industry standard WebSocket library (Wessels et al., 2011). This provides
an efficient channel through which the simulator can pass information to the VI module. Before
the simulator can pass data to the VI module, it must first collect the data. The following section
describes this process and then the way collected data is transferred by the network communication
layer is discussed.
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Figure 4: The inclusion of background traffic into simulation platform

Data collection

Data collection within A-RESCUE 2.0 follows the organization scheme of collecting together all the
data points generated during each tick of the simulation. The data generated in each tick is placed
into a queue that stores the data for different ticks. The proposed data collection framework design is
efficient, scalable, and expandable because the framework passively waits for the simulator to provide
new data points. Thus, there is no wasted effort to check unchanging objects within the model when
no new data is generated. For example, vehicles in the network might not move for some time steps,
therefore for these time steps simulation does need not provide any input to the collection framework
as there is no update in the information.

Network communication

The network communication between simulator and the add-on VI module is built using WebSocket
library (Wessels et al., 2011). A survey of common networking platforms identified REST (Fielding,
2000) and WebSocket as two good candidates based upon industry accepted standards. Both feature
a robust collection of libraries for easy implementation in a wide variety of modern programming
languages. Due to the volume of data being generated and greater efficiencies inherent in its design for
continuously streaming data, WebSocket is selected as the platform for A-RESCUE 2.0. In addition,
WebSocket connections are persistent between data transmissions and avoid the overhead issues of
protocols like REST that need to establish a new connection with each request of data transfer.

Once the data collection framework begins to receive the data generated during different ticks,
data is periodically streamed through WebSocket to the VI module. WebSocket connections send each
tick data as one message. Then, VI module receives communication from the simulator as a stream of
messages to be processed. When a new data message is received, it is decoded into an appropriate data
structure to be utilized by the VI module. The decoded data is placed into a queue from which the
module can read and process each simulated tick sequentially to recreate the visualization of simulator’s
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execution history. Figure 5 presents the data communication framework connecting simulator and VI
module.

Visualization

We developed our VI module to address the drawbacks associated with the performance of built-in
VI module of the Repast Simphony simulation platform, where the displayed simulation information
is very limited and is found to be a performance bottleneck of our simulator. The VI module obtains
the streaming data from simulator through the data communication protocol, visualizes the vehicle
movements and efficiently monitors the network status of the simulation. The VI module is based
on Java platform, for which the input file is obtained as explained before. We use Mapsforge library
(Hansen et al., 2016) to render the OSM file as the underlying map, and GEOS library (Steiniger and
Hunter, 2013) to handle the fundamental geometries of shapefile. A screenshot of the visualization
interface is shown in Figure 6.

Figure 6: Visualization interface

The VI consists of three main sections: the control panel on top left corner, the information panel
on lower left corner, and the entire map view of the study area which occupies most part of the
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interface. We can input map file, adjust simulation speed, and change vehicle color and vehicle size
using the control panel. The information panel shows the summary of statistics for the entire network
including the total departed and arrived vehicles, as well as information of selected vehicles (e.g., ID,
speed, origin and destination). A snapshot of the control panel and selected vehicle on the network is
shown in Figure 7.

Figure 7: Screen shot of visualization setting and running vehicles

Besides the basic functionality for visualizing vehicle movements, an additional component to in-
spect network status is also developed. The component is named as shapefile viewer, which displays the
underlying shapefile of the network and is synchronized with the view of vehicle movements, as shown
in Figure 8. Since the rendered OSM file is a tile map without geometry information, the shapefile
viewer provides the detailed link-level information, including link IDs, number of lanes, speed limits,
and free flow travel times etc. In addition, it can display dynamic background traffic information at
link level (see Figure 9), which helps to monitor the traffic condition of the network for the evacuating
vehicles.

Note that computational performance is a major concern of this research, which is also a motivating
reason for developing the VI module. Therefore, the computational performance of the VI module is
tested. We conduct the experiments with various load levels, from 1,000 vehicles up to 100,000 vehicles.
The test network is the Miami-Dade network with more than 4,000 nodes and 8,000 links. For the
worst case (100,000 vehicles), only the vehicle loading part consumes most of the time (around 30
seconds) since all vehicles were loaded at the same time. As soon as all vehicles are loaded properly,
the visualization of their movement is very smooth and efficient, with CPU usage being consistently
lower than 20% on a desktop with @3.4GHz processor and 16GB RAM.

Results

In this section, the results of simulation scenarios conducted on a real world road network are presented.
The default test configuration is set to 20,000 vehicles, 250000 simulation ticks or 20.8 hours of real
world time on Miami Dade county network that contains about 8580 roads. We also conduct tests
with a larger vehicle demand whose details would be later provided. After completing extensive
computational tests both Tpart and Tref are set equal to 1000 simulation ticks. Also, parameters Nmin
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Figure 8: The shapefile viewer

Figure 9: The shapefile viewer displaying background traffic information

and Tmax of adaptive network partitioning are set to 200 vehicles and 10000 ticks, respectively. In
order to compute scale parameters α, β and γ for predictive network weighting scheme comprehensive
experimental tests are conducted. We discuss more about these tests in a later section. Parameters
(α, β, γ) were selected equal to (15, 5, 10) and (10, 5, 10) for SP and KSP, respectively. The tests are
conducted on a machine having 32 logical cores, memory of 252 GB RAM and Intel Xeon processors
with 2.90 GHz CPU speed.
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Computational performance with the number of partitions and routing strate-
gies

In this section, variation of computational performance with the number of partitions is discussed.
Figures 10a and 10b provide the plots of computation time for routing strategies SP and KSP, respec-
tively. Note that the number partitions are always equal to some powers of two because partitioning in
GMetis is done using a recursive algorithm that creates partitions by bisecting existing partitions. It
can be observed that computation time reduces with the number of partitions for both the routing al-
gorithms. However, the improvement in computation time is more for KSP as compared to SP because
of high routing computation involved in KSP as compared to SP. This computation gets distributed
among the threads of different partitions and overall computation time reduces.
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Figure 10: Variation of computation time with the number of partitions

We also conducted scalability tests with a larger demand file that consisted of around 80,000
vehicles for the duration of 1 million simulation ticks or 83 hours of real world time on the same
network. Figures 11a and 11b present the plots of computation time for routing strategies SP and
KSP, respectively. It can be observed that improvement in computation time for KSP is higher as
compared to SP for the same reasons mentioned before.

Variation of computation with repartitioning period

In this section, the effect of repartitioning period, Tpart, on computational performance is analyzed.
As mentioned before, the length of this period determines how frequently the network is repartitioned.
Table 2 presents the variation of computational performance with Tpart while other parameters are
kept constant including Tref (set to 1000 simulation ticks). It can be observed that simulation time
increases with repartitioning period. That is because although the computation corresponding to
repartitioning reduces with increasing Tpart, the computational imbalance across different partitions
increases when repartitioning is done less frequently. The latter overshadows the effect of former and
hence, the overall computation increases with Tpart.

Table 2: Variation of simulation time with repartitioning period
Tpart(ticks) Computation time (hours)

1000 7.01
2000 7.21
3000 7.42
4000 7.60
5000 7.63

Variation of computation with network refresh period

We now understand the effect of network refresh period Tref on computational performance. Table 3
presents the variation of computation time with with Tref (other parameters are kept fixed including
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Figure 11: Variation of computation time with the number of partitions for larger demand file

repartitioning period Tpart which is set to 2000 simulation ticks). It can be observed that computational
performance reduces with increasing length of network refresh period. That is because every time the
network is refreshed, routes of vehicles are recomputed. Since the amount of computation associated
with routing is significant, the reduction in computation time is significant with increasing length of
network refresh period.

Table 3: Variation of simulation time with network refresh period
Tref (ticks) Computation time (hours)

500 9.29
1000 7.21
2000 5.96

Performance with developed vs built-in VI module

In this section, the computational performance of A-RESCUE 2.0 when using the developed VI module
is compared to when the built-in VI module of Repast Simphony is used. Table 4 shows simulation
computation for parameter setting times when no VI module is used, a separate VI module is used
(connected through the simulator through data communication) and when built-in VI module is used.
It can be seen that using the developed VI module reduces the additional computational load on
simulation machine due to the use of visualization to 2% as compared to the corresponding 9% load
for built-in visualization. This is because of the efficient data communication scheme and also because
of the fact that VI module running on a separate machine reduces the computation and memory
consumption on the simulation machine.

Table 4: Simulator computation time for different visualization settings
Setting Computation time (hours) Percentage increase from no visualization

No visualization 7.94 -
Developed add-on VI module 8.09 1.9%

Built-in VI module 8.64 8.8%

Trip travel time analysis with varying network conditions

We now analyze the effect of road blockages on trip travel times of evacuees during hurricane evacuation.
Such blockages can occur due to flooded roads, due to sudden influx of evacuees on roads at same time
etc. As mentioned before, such blockages are introduced in A-RESCUE 2.0 using event handling
scheme. We set the free-flow speeds of blocked roads to a small value in order to simulate blocking.
Figure 12 and Table 5 present the distribution and average of trip travel times, respectively. We
consider four scenarios: first setting does not contain any blocked road in the network and remaining
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(b) 5% roads on the network are blocked
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(c) 15% roads on the network are blocked
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Figure 12: Distribution of trip travel time under different road blockage settings

three settings consider different proportions of network roads to be blocked. The blocked roads are
chosen randomly across the network. In no blockage setting, free-flow speeds are solely governed by
background traffic updates whereas in the remaining settings free-flow speeds are also governed by
event handling scheme. It can be seen that with increasing blockage trip travel time distribution gets
skewed towards higher travel time values. This is also confirmed by the increasing average travel time
values with blockage percentage.

Table 5: Average trip travel time under different road blockage/congestion settings
Network congestion setting Average trip travel time (minutes)

No blockage 50.7
5% roads on the network are blocked 55.7
15% roads on the network are blocked 84.6
25% roads on the network are blocked 145.9

Sensitivity of computation towards predictive network weighing scale pa-
rameters

As mentioned before, extensive experimental tests are carried out to finalize predictive network weigh-
ing parameters α, β and γ. It involves conducting an iterative process of varying one parameter while
fixing the other two and repeating the process for all parameters until convergence is reached. Parame-
ters that allow highest computational performance are finally chosen. The tests are conducted for both
routing algorithms SP and KSP. Table 6 presents the variation of computation time for different pa-
rameter settings (bold parameters represent optimal parameters for the corresponding iteration). We
proceed in the following order of varying parameters: γ → α → β → γ and observe that convergence
is reached.
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Table 6: Variation of computation time for SP and KSP with different scale parameters settings (bold
parameters represent optimal parameters for the corresponding iteration)

Iteration
Parameters for
SP (α, β, γ)

Computation time
for SP (hours)

Parameters for
KSP (α, β, γ)

Computation time
for KSP (hours)

2, 5, 2 6.41 2, 5, 2 8.91
2, 5, 5 6.70 2, 5, 5 8.49

1 2, 5, 10 6.37 2, 5, 10 8.47
2, 5, 20 6.64 2, 5, 20 8.52

2, 5, 10 6.37 2, 5, 10 8.47
5, 5, 10 6.28 5, 5, 10 8.40

2 10, 5, 10 6.58 10, 5, 10 8.09
15,5,10 6.20 15, 5, 10 8.16

15, 1, 10 6.23 10, 1, 10 8.35
15,5,10 6.20 10, 5, 10 8.09

3 15, 10, 10 6.21 10, 10, 10 8.84
15, 15, 10 6.21 10, 15, 10 8.53

15, 5, 2 6.22 10, 5, 5 8.69
15, 5, 5 6.48 10, 5, 10 8.09

4 15,5,10 6.20 10, 5, 15 8.43
15, 5, 20 6.36 10, 5, 20 8.35

Conclusions and future directions

This paper develops A-RESCUE 2.0, a parallelizable large-scale agent-based traffic simulator that is
capable of simulating large-scale traffic patterns during hurricane evacuation. Realistic household evac-
uation behaviors are captured using a series of evacuation decision making models. A parallelization
scheme is introduced to improve the computational performance of the simulator. The scheme involves
partitioning the network into subnetworks using a multi-level graph-partitioning algorithm such that
computation corresponding to different subnetworks is handled in parallel by separate Java threads.
Due to changing traffic conditions across the network, equal distribution of load across subnetworks is
ensured through periodic repartitioning of the network. A predictive network weighing scheme is intro-
duced that takes into account current and future loads during repartitioning. Weights corresponding
to current and future load are fixed through extensive experimental tests to ensure minimal computa-
tional load. Also, an adaptive strategy determines the period of repartitioning based on current traffic
load on the network. Experimental tests demonstrate significant improvement in computation time
due to parallelization.

Vehicles can travel on the network through either of the two routing algorithms: Single shortest
path (SP) and K shortest paths (KSP). An on-demand routing strategy is proposed that minimizes the
overall routing computation in simulation. In addition, a background traffic scheme updates hourly
free-flow speeds that takes into account traffic congestion due to non-evacuee traffic. The simulator
is also capable of simulating events like road closures or blockages on roads. We also conduct trip
travel time analysis for varying road blockages on the network and verify that average trip travel time
increases with increasing blockage on the network.

An add-on visualization interface module is developed that allows real-time monitoring of traffic
patterns across the network. This module communicates to the simulator using a network commu-
nication layer of WebSockets that routinely transmits vehicle trajectory information to the module.
This layer also allows simulator and visualization module to work on separate machines, thereby dis-
tributing the overall computation. Computational tests suggests that the developed visualization and
network communication layer add lesser computational load to the simulation machine as compared
to using the built-in visualization module.

There are some limitations of this study that should be of interest while conducting future re-
search: 1) In A-RESCUE 2.0, the event information like road blockage are predefined and are taken
as input from the beginning. In order to simulate real time evacuation and enrich user experience,
the data communication should also be able to communicate from visualization to simulator so that
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users/evacuation officials prioritize certain road closures by observing the visualization interface; 2)
A-RESCUE 2.0 assumes that all users update their routes in a uniform manner but that need not be
true. Some users might not update their routes based on traffic conditions, some might update their
routes less frequently and some might update their routes very frequently. The simulator should be
extended to take into account multiple routing behaviors; 3) A-RESCUE 2.0 should be extended to
take into account multiple vehicle types having different acceleration rates, deceleration rates and other
characteristics. This would allow modeling of different types of vehicles like trucks, passenger cars etc;
4) On the traffic network side, there can be various traffic flow restrictions (e.g. contra-flow) and signal
priorities for managing evacuation traffic efficiently. It will be particularly useful to test such traffic
options in an integrated simulation system; 5) Currently the simulation system does not model how
the warning information is propagated and processed and how it influences the evacuation decisions.
Considering an underlying social network among the agents and modeling a dynamic decision-making
context, such phenomena can be simulated.
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