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This study investigates the Multivariate Poisson-lognormal (MVPLN) model that jointly
models crash frequency and severity accounting for correlations. The ordinary univariate
count models analyze crashes of different severity level separately ignoring the correlations
among severity levels. The MVPLN model is capable to incorporate the general correlation
structure and also takes account of the overdispersion in the data that leads to a superior
data fitting. However, the traditional estimation approach for MVPLN model is computa-
tionally expensive, which often limits the use of MVPLN model in practice. In this work, a
parallel sampling scheme is introduced to improve the original Markov Chain Monte Carlo
(MCMC) estimation approach of the MVPLN model, which significantly reduces the model
estimation time. Two MVPLN models are developed using the pedestrian–vehicle crash
data collected in New York City from 2002 to 2006, and the highway-injury data from
Washington State (5-year data from 1990 to 1994) The Deviance Information Criteria (DIC)
is used to evaluate the model fitting. The estimation results show that the MVPLN models
provide a superior fit over univariate Poisson-lognormal (PLN), univariate Poisson, and
Negative Binomial models. Further, the correlations among the latent effects of different
severity levels are found significant in both datasets,that justifies the importance of jointly
modeling crash frequency and severity accounting for correlations.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Analyzing road crash-related injuries by severity level is critical for design and implementation of traffic safety coun-
termeasures. The estimated cost of crashes can be significantly different at different severity levels, which poses great
impact in the design of safety intervention techniques. For instance, a road segment with higher frequency of fatal crashes is
more hazardous than a road segment with fewer fatal crashes but with more injury crash occurrences (Wang et al., 2011).
From modeling perspective, the crash count data at different severity levels are potentially correlated due to both observed
and unobserved factors (Mannering and Bhat, 2014). Multivariate count models offer estimation methods that allow for the
correlation among severity levels. Studies analyzing the frequency of crashes and the resulting severity levels are affluent in
the literature. With few exceptions, most studies apply univariate models without accounting for the possible correlations
among different severity levels (e.g., the correlation between number of fatal and severe injury crashes). Significant
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correlation among different crash related outcomes has already been reported in the literature (Bijleveld, 2005), which can
be either caused by shared information in latent effects (Chib and Winkelmann, 2001), spatially or temporal dependencies
(Aguero-Valverde and Jovanis, 2010; Barua et al., 2014), or omitted variables that impact all levels of crash frequencies
(El-Basyouny and Sayed, 2009). Further, univariate models that focus on specific crash severity level also suffer from similar
shortcomings. Both approaches treat the correlated crash counts as independent and accordingly lead to a less accurate or
sometimes even misspecified model estimation result (Park and Lord, 2007). As a result, insights from these models without
the aforementioned considerations can readily lead to ineffective countermeasures and safety policies. Multivariate count
models that simultaneously analyze different severity levels using the same set of explanatory variables can overcome the
limitations discussed above (Pei et al., 2011; Mannering and Bhat, 2014). This also solves the generalization problem when
inferring from risk factors associated with the crashes (e.g. the effects of variables are not generalized for different levels of
severity, that same variable might have different impacts on different severity levels). Unlike the field of long matured
univariate count models, the field of multivariate count data models is relatively new. Most of the multivariate count models
in literature were constructed as multivariate generalization and variation of Poisson class of models, such as Multivariate
Poisson (MVP) model (Kocherlakota and Kocherlakota, 1992), Multivariate Negative Binomial (MVNB) model (Winkelmann,
2000; Caliendo et al., 2013), Poisson-Gamma Mixture model (Hausman et al., 1984) and Multivariate Poisson Log-Normal
(MVPLN) model (Park and Lord, 2007; Ma et al., 2008; El-Basyouny and Sayed, 2009; Aguero-Valverde and Jovanis, 2009;
Aguero-Valverde, 2013). Another major branch of multivariate count models focus on modeling the spatial and temporal
dependencies in multi-severity crash data (Song et al., 2006; Aguero-Valverde and Jovanis, 2010; Castro et al., 2012;
Narayanamoorthy et al., 2013; Wang and Kockelman, 2013; Barua et al., 2014). Although aforementioned models are ad-
vantageous to account for correlation of crash counts among different severity levels, they are either too restrictive in
modeling assumptions, relatively time-consuming to estimate, or have feasibility issue in the case of high dimensionality
when encountered for spatial and temporal dependencies (Mannering and Bhat, 2014).

Multivariate Poisson (MVP), Multivariate Negative Binomial (MVNB) and Multivariate Poisson Log-Normal (MVPLN)
models are among the most frequently used multivariate count models that account for Poisson variation and heterogeneity
in the context of safety analysis. The MVP model has Poisson distribution as its marginal distribution, however, assumes the
covariance for different severity levels to be identical and nonnegative. This is a highly restrictive assumption since different
severity levels can have different covariance and the possibility of negative correlations cannot be discarded entirely (Park
and Lord, 2007; Ma et al., 2008; El-Basyouny and Sayed, 2009). To relax the “equal covariance” assumption and account for
overdispersion inherited from Poisson distribution, the Multivariate Negative Binomial (MVNB) and Poisson-Gamma Mix-
ture models were developed. However, both models only allow for positive correlation, which still lacks a general corre-
lation structure. Due to the limitation of previous models, the MVPLN approach is generally preferred over the previous
approaches. Two key reasons are: (a) MVPLN can account for over-dispersion in the count data; (b) a general correlation
structure can be used (Chib and Winkelmann, 2001; Park and Lord, 2007; El-Basyouny and Sayed, 2009). Although MVPLN
models provide a sound framework for crash analysis, only a few studies applying the MVPLN model can be found in the
literature (Park and Lord, 2007; Ma et al., 2008; El-Basyouny and Sayed, 2009; Aguero-Valverde and Jovanis, 2009; Aguero-
Valverde, 2013). One major reason of the limited use of MVPLN model is associated with the difficulty in the model esti-
mation. Previous studies developed multiple codes and tools to estimate MVPLN model, however, these tools were either
failed to provide comprehensive goodness-of-fit measure or took considerable amount of time in model estimation, which
limits the implementation of MVPLN model by practitioners.

This study implements the MVPLN framework on two crash datasets to demonstrate the superiority of MVPLN model on
estimation accuracy and the ability to capture correlations among crash severity levels. The primary dataset is a compre-
hensive bivariate (fatal and severe injury) pedestrian–vehicle crash data from 2183 census tracts of New York City (NYC). A
second and smaller highway injury dataset from 275 roadway segments in Washington State with three severity levels (no-
injury, possible injury and evident injury) is also included to demonstrate the applicability of the MVPLN model and solution
approach on multivariate case. To address the cumbersome and time-consuming computation issue of the original Monte
Carlo Markov Chain (MCMC) estimation approach for MVPLN model, this study proposes a parallel sampling scheme for the
original MCMC estimation approach and develops an efficient MATLAB codes to estimate the MVPLN models. The improved
estimation approach significantly reduces the computation time for MVPLN models, which makes MVPLN model a more
appealing analytical tool for practitioners to solve real world problems. A comparison study on MVPLN, univariate Poisson
Log-Normal (PLN), univariate Poisson and Negative Binomial is also conducted to compare the model fitting results for
different models. Finally, we also quantify and examine the extent of correlation among different crash severity levels from
the two estimated models. In summary, this work contributed to the literature in the following aspects:

� Proposed a parallel sampling scheme to allow for efficient estimation of MVPLN model.
� Apply MVPLN framework to jointly model different crash severity levels using two different multivariate crash count

dataset and providing insights about contributing factors of crashes.
� Revealed universal high level of correlations among different severity levels of crash counts in two types of crashes: urban

pedestrian–vehicle crashes and highway vehicle crashes.
� Built a computationally efficient tool for practitioner to better apply MVPLN models.
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2. Previous research

The conventional univariate count data models such as Poisson, Negative Binomial, Zero-Inflated Poisson and Zero-
Inflated Negative Binomial models are widely used in crash analysis when modeling the total number of crashes (which
include all severity outcomes). However, univariate count data models may not be appropriate when modeling individual
severity levels because they do not account for possible correlation among the number of crashes occurring in each severity
level. In this case, multivariate count data models are more appropriate for crash analysis that simultaneously modeling
different severity levels and accounting for generalized correlation structure among the severity levels.

A number of multivariate count models that account for Poisson variation and heterogeneity in crash data have been
developed in literature. Kocherlakota and Kocherlakota (1992) proposed the Multivariate Poisson (MVP) model, which uses
Poisson distribution as its marginal distribution. Due to the ease of the estimation procedure, the MVP model became the
only multivariate count data model that put to practical use in econometrics. However, MVP models cannot account for
negative correlation and overdispersion in severity levels of each observation. As an extension of MVP, the Multivariate
Negative Binomial (MVNB) model (Winkelmann, 2000; Caliendo et al., 2013) and Multivariate Poisson-Gamma Mixture
model (Hausman et al., 1984) can account for overdispersion, but still only allow for non-negative correlations. The reason
for inability to capture the negative correlation in the three abovementioned models is associated with their so-called one-
factor structure, that the correlation is generated through an individual specific random factor which does not vary over
outcomes (Winkelmann, 2008). To overcome the drawbacks of MVP, MVNB and Multivariate Poisson-Gamma Mixture
models, Chib and Winkelmann (2001) developed the MVPLN model. The MVPLN models allow for a more general corre-
lation structure (both positive and negative), and are also capable of capturing the overdispersion in the data.

Several studies have used MVPLN models to perform multivariate analysis for crash count data. Park and Lord (2007)
developed MATLAB codes for MVPLN model to analyze the crash data with five different severity levels collected from 451
three-leg non-signalized intersections, and more accurate estimates were observed. Ma et al. (2008) coded an R program to
model the crash counts by severity levels using data collected from Washington State through the HSIS on 7773 rural two-
lane roadways in Puget Sound region. Their results showed that the MVPLN model provides better predictions than those
from univariate Poisson and negative binomial models. Aguero-Valverde and Jovanis (2009) used full Bayes estimation
approach on OpenBUGS to estimate MVPLN model. Compared with univariate Poisson lognormal (PLN) estimates, they
showed that the MVPLN model fitted better than the univariate model and the correlations among crash severities are found
high between contiguous severity levels. El-Basyouny and Sayed (2009) used the WinBUGS platform to model 99 signalized
intersections in the city of Edmonton. Highly significant correlation between no-injury crashes and injuries plus fatalities
(IþF) crashes was observed. Also, the results showed that MVPLN can lead to a higher precision in highly correlated no-
injury and IþF crashes. Park et al. (2010) generalized the MVPLN model to encompass a change-point model that can
analyze before-after data with comparison groups. The model was applied to Korean expressway crash data to perform
safety evaluation of decreasing the speed limit, which showed the flexibility of the MVPLN modeling framework. All of these
previous studies confirmed that MVPLN model provides superior fit to the data compared with univariate models.

Other multivariate modeling frameworks that generalize Poisson count models also exist in multivariate crash count data
analysis. Ye et al. (2009) proposed a simultaneous equations model of crash frequencies by collision type using crash data for
rural intersections in Geogia. However, it was reported that the results of the proposed model do not differ substantially
than the MVP model, thus from a statistical standpoint, the gain in efficiency and goodness-of-fit was modest. Nikoloulo-
poulos and Karlis (2010) proposed a regression copula-based model for bivariate count data. Although this model offers
some flexibility by being able to incorporate different marginal distributions, a limitation for this approach is that it restricts
the application only to bivariate count data. Pei et al. (2011) proposed two specific joint-probability approaches under
Bayesian framework to simultaneously modeling crash frequencies of different severity levels. However, this study only
assessed a binary-severity case study at signalized intersections in Hong Kong and the performance of this model on
multivariate crash count data still needs further examination. Chiou and Fu (2013) proposed a multinomial-generalized
Poisson model and analyzed the accident for Taiwan’s No. 1 Freeway. However, this model uses shared error component to
handle the common error term and covariance structure, which is less flexible compared with the MVPLN model.

Besides the aforementioned models, another major class of multivariate models were developed to account for the
spatial and temporal dependencies in multi-severity crash data (Song et al., 2006; Aguero-Valverde and Jovanis, 2010;
Castro et al., 2012; Narayanamoorthy et al., 2013; Wang and Kockelman, 2013; Barua et al., 2014). Since the scope of this
paper is not to investigate the spatial and temporal correlations in crash data, thus the detailed discussion of these models is
omitted here.

Due to the nice features of the MVPLN model showed in literature, this study focuses on implementing MVPLN model to
simultaneously model crash data on two dataset: a pedestrian–vehicle fatal and severe injury crash data in New York City,
and a supplementary smaller scale highway injury data with three severity levels (no-injury, possible injury and evident
injury) from Washington State. This study improves the original estimation procedure of MVPLN model by introducing a
new parallelized MCMC scheme to speed up the model estimation. For comparison purpose, univariate Poisson-Lognormal
(PLN), Poisson and Negative Binomial models were also estimated using the same set of explanatory variables and reported
in the paper.
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3. Methodology

3.1. The MVPLN model

The MVPLN assumes multivariate normal distributed latent effects in a Poisson distribution. Let yis be the pedestrian–
vehicle crash counts of census tract i ( =i n1, 2, ... , ) and severity level s ( =s S1, 2, ... , ). Let ε ε ε ε= ( … ), , ,i i i is

T
1 2 be the se-

verity-level specific latent effects for census tract i, and denote ε ε ε ε= ( … ), , , n1 2 the severity-level-specific latent effects
across census tracts. Let xis be the explanatory variables, and βs be their coefficients. Assume the crash counts yis conditioned
on εi, the explanatory variables xis, and corresponding coefficients βs are independent Poisson distributed:

( )ε β λ| ∼ ( )y x Poisson, , 1is i s i is

where λ β ε= ( + )xexpis i s is . In MVPLN model, the latent effect εi defined for each observation is assumed to be uncorrelated
with the explanatory variable xi and follows a multivariate normal distribution with a mean vector of 0 and an unrestricted
variance–covariance matrix, which is

( )Σ φ Σϵ ~ = … ( )i n0, , for 1, 2, , 2i s
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It should be noted that unlike the random parameter models (allowing parameter vary across observations) (Hensher and

Greene, 2003; Milton et al., 2008) or finite mixture (latent class) methods (assume the sampled observations arise from
distinct groups with homogeneous features) (Depaire et al., 2008; Eluru et al., 2012; Xiong and Mannering, 2013) that usually
used in capture unobserved heterogeneities, the MVPLN model uses fixed parameters but introduces latent variable εi for each
observation to accommodate the individual unobserved heterogeneity correlated among severity levels. As shown by Chib and
Winkelmann (2001), the correlation between crash counts within segments can be positive or negative, which is unrestricted,
depending on the sign of σsl. A positive σsl correspond to a positive correlation between yisand yil, vice versa. Moreover as σss
( = …s S1, , ) can also be positive, thus the model structure can also account for overdispersion.

3.2. Parameter estimation via MCMC simulation

As obtaining the marginal distribution for MVPLN model requires the evaluation of the S-variate integration of the
Poisson distribution with respect to the distribution of εi, which is

( ) ( )∫ ( )λ Σ β φ Σ| = Π |ϵ ϵ | ϵ ( )=
P y y x d, , , 0, 4i i

s

S

is i s is s i i
1

Above distribution cannot be obtained through direct computation, thus the MCMC simulation approach is applied to
estimate the unknown parameters under a Bayesian framework. For the prior distributions, it is assumed β and Σ in-
dependently follow a multivariate normal distribution and a Wishart distribution:

( ) ( )β φ β Σ~ ~ ( )β Σ Σ
−V f v V, , , 5k W0 0

1

where ϕ (⋅)k is the probability density function of multivariate normal distribution with mean β0 and covariance matrix βV
0
;

(⋅)fW is the Wishart distribution with degrees of freedom Σv and scale matrix ΣV . The β β ΣV v, ,0 0 and ΣV are known hy-
perparameters. According to Bayes’ theorem, the joint posterior density is proportional to:
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The joint posterior is then simulated by iteratively sampling from following three conditional posterior dis-
tributions:π Σ ε( | )−P 1 , π ε β Σ( | )y X, , ,P , and π β ε Σ( | )y X, , ,P . The sampling process is divided into three parts, which are sampling
Σ−1, ε and β accordingly.

3.2.1. Sampling Σ�1

The posterior kernel of Σ−1 conditioned on data and other parameters can be written as

( ) ( ) ( )∏π Σ ε Σ ϕ ε Σ| ∝ | |
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Σ Σ
− −
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By combining terms, the above posterior density is still a Wishart, which is
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Above distribution is a known parametric distribution and thus can be sampled using a Gibbs sampler.
3.2.2. Sampling ε in parallel
As the full posterior density for εi, π ε β Σ( | )y X, , ,P is not given by any known density, thus the Metropolis–Hastings (M–H)

algorithm is applied. The multivariate t distribution is used as the proposal density distribution, given as ε ε( |^ )ε ε^f V v, ,T i i i
,

where ε̂i is obtained by maximizing the posterior probability for εi using Newton–Raphson algorithm:
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Since the latent effect εi is independent between different observations, thus ε can be sampled in parallel for multiple
observations. This scheme significantly speeds up the sampling process and shows superior performance especially when
the number of observations is large.
3.2.3. Sample β in parallel
Similar to sampling εi, the M–H algorithm is used to sample β . As suggested by Chib and Winkelmann (2001), sampling β

in one block may produce many rejections in M–H algorithm. An alternative approach is to sample the component of β , βs
one at a time. Again, the parallelization scheme is introduced to sampling multiple βs′s simultaneously. The multivariate t
distribution β β( | ^ )β β^f V v, ,T s s s

is again used as the proposal density distribution, with β̂s obtained by maximizing the posterior
probability for βs using Newton–Raphson algorithm:
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3.3. Model comparison

The Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002) is a commonly used goodness of fit measure in
Bayesian statistics. DIC is a Bayesian generalization of Akaike's Information Criteria (AIC) and Bayesian information criterion
(BIC). Let θ be the parameter of the model, define θ θ( ) = − [ ( | )] + [ ( )]D p y f y2 ln 2 ln as Bayesian deviance, in which θ( | )p y is the
likelihood function and ( )p y is a standardizing term that is a function of the data alone. Since ( )p y is a constant that cancels
out in all calculations thus usually omitted in computation. The DIC is computed as

θ θ= + ( ) = ( ¯) + ( )DIC p D D p2 14D D

where θ θ= ( ) − ( ¯)p D DD . θ θ¯ = [ | ]E y and θ θ( ) = [ ( )| ]D E D y are the posterior means of θ and the Bayesian deviance θ( )D re-
spectively. A model with lower DIC indicates a superior model fit to the data. The DIC was used as the model comparison
measure in the estimated MVPLN models in this paper. The final models were selected from the model with the set of
explanatory variables that yields lowest DIC.

3.4. Elasticity of crash frequencies λis

To evaluate the relative impact of each variable in the model, the elasticity of the expected crash frequency λis is com-
puted. Following the general formula for direct elasticity, the elasticity of the expected crash frequency λis for census tract i
and severity level s is evaluated as follows:
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Since the posterior means of the parameters β ε¯ ¯,s is easily obtainable from the MCMC simulation, we compute the elas-
ticity of frequency λis evaluated at the posterior means of the parameters β ε( ¯ ¯ ),s is , and the average elasticity overall all census
tracts is reported.
4. Data

To fully demonstrate the analytical capability of the MVPLN model, we have used two datasets: (a) census level pe-
destrian–vehicle crash data with two severity levels (Shin et al., 2010; New York City Department of Transportation
(NYCDOT), 2007) from New York City (5 year data – from 2002 to 2006), and (b) highway crash data (Milton et al., 2008)
with three severity levels from Washington State (5 year data – from 1990 to 1994).

The pedestrian–vehicle crash dataset serves as the primary dataset for the analysis in this paper, since it is more
comprehensive with 2183 observations (census tracts of New York City) and 90 explanatory variables. The dataset was
compiled by Center for Transportation Injury Research at CUBRC from multiple sources and used by several studies to
analyze pedestrian–vehicle crashes in New York City (Ukkusuri et al. 2011; Aziz et al., 2013; Mohamed et al., 2013; Yasmin
et al., 2014). However, these studies either focused on modeling crash severity levels or use univariate count data model by
aggregating pedestrian–vehicle crashes across severity levels. The dataset contains 637 fatal pedestrian–vehicle crashes and
5790 severe injury crashes. In the dataset, for each of 2183 census tracts of New York City, the numbers of fatal and severe
pedestrian–vehicle crashes were aggregated and the corresponding demographic information, land use patterns and traffic
system characteristics were also gathered. Table 1 gives the descriptive statistics of the 16 explanatory variables used in the
developed model.

One limitation of the pedestrian–vehicle crash dataset is that it only contains two severity levels: fatal and severe injury
crashes, which is insufficient to fully illustrate the potential of the MVPLN model. Consequently, a second MVPLN model
using the Washington State highway injury dataset with three severity levels (no-injury, possible injury, evident injury) was
developed to demonstrate the applicability of the proposed estimation procedure and tool on multivariate cases. The dataset
is from a previous study by Milton et al. (2008), which consist of crash injury data of 275 roadway segment from 1990 to
1994 in Washington State with 30 explanatory variables. Detailed information of this dataset please refer to Milton et al.
(2008). Since the dataset is much smaller and less detail compared to the pedestrian–vehicle crash dataset, it is used as a
supplement. Table 2 provides the descriptive statistics of the 9 explanatory variables used in the supplementary MVPLN
model.
Table 1
Descriptive statistics of selected variables (NYC pedestrian–vehicle crash dataset).

Variable description Mean Std. dev. Minimum Maximum

Dependent variable
Number of fatal crashes 0.292 0.613 0 5
Number of severe injury crashes 2.652 3.197 0 34

Demographic characteristics
Tract population in 2000 (in 10,000) 0.367 0.244 0.003 2.452
Black population proportion 0.281 0. 322 0 0.980
Population aged 65 and over proportion 0.119 0.066 0 0.900
Population aged 25 years and over with high school education proportion 0.326 0.101 0 0.826

Land use attributes
Industrial/manufacturing land use proportion 0.039 0.066 0 0.605
Number of schools 1.077 1.410 0 13

Road network and intersection operation characteristics
Signalized intersections (in 10) 0.561 0.474 0 10.5
Length of roads in miles in tract (in 10 miles) 0.384 0.566 0.02 10.421
Primary roads without limited access proportion of total roadway length 0.028 0.080 0 0.993
Local, neighborhood, and rural roads proportion of total roadway length 0.702 0.207 0 0.999
Roads in tract with 5 or more travel lanes proportion of total roadway length 0.050 0.023 0 0.238
Roads with lane widths less than 30 ft proportion of total roadway length 0.233 0.208 0 0.993
Truck routes proportion of total roadway length 0.166 0.175 0 0.985
Subway stations in tract 0.224 0.541 0 7



Table 2
Descriptive statistics of selected variables (Washington State highway injury dataset).

Variable description Mean Std. dev. Minimum Maximum

Dependent variable
Number of no-injury crashes 9.749 12.587 0 87
Number of possible injury crashes 3.415 5.623 0 32
Number of evident injury crashes 3.771 4.762 0 35

Explanatory variables
Highway segment length in miles 2.430 2.694 0.5 19.3
Logarithm of average annual daily travel per lane 8.631 0.763 6.730 10.264
Maximum grade difference in the segment 3.039 1.983 0 9.8
Number of horizontal curves per mile in the segment 1.440 0.961 0 5
Percentage of trucks (all truck types) in the traffic 14.163 6.692 3.2 32
Low precipitation indicator (≤12 in. per year) 0.324 0.469 0 1
Heavy snow fall indicator (≥18 in. per year) 0.178 0.383 0 1
Local road indicator 0.305 0.461 0 1

Fig. 1. Computation performance of performing 10,000 MCMC sample draws on two datasets.
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5. Results and discussions

A new tool was developed in MATLAB to estimate the MVPLN model implementing the parallelized MCMC sampling
scheme described in the methodology. For the estimation of the MVPLN model, 10,000 MCMC sample draws were used and
the first 4000 sample draws were discarded. The trace plots for all of the model parameters were inspected to ensure the
convergence. A second chain using different initial values for each model was also performed to verify the convergence of
the estimates to the same set of posterior means. Fig. 1 shows the computation performance of the parallel sampling scheme
by performing 10,000 MCMC samples draws on the two datasets studied in this paper. All tests were conducted on an Intel
i7 2.3 GHz CPU laptop. The computation time can be further reduced if more parallel threads were used. The parallelized
sampling scheme effectively reduced the computation time. For the larger NYC pedestrian–vehicle crash dataset (2 seve-
rities, 2188 observations), the estimation process without parallelization takes 221 min while with 8 parallel threads, the
computation time is reduced to 56 min. For the smaller Washington State highway injury dataset (3 severities, 275 ob-
servations), with 8 parallel threads, the entire estimation process just takes less than 13 min.

As the parameters were estimated using a MCMC approach, the high density region (HDR) containing 95% (2.5–97.5%) of
the sample coefficient values was used to inspect whether a parameter is statistically significant. The criteria for variable
selection in developing the two models in this paper are: (1) the variable was statistically significant in all severity levels or
had significant impact on one severity level; (2) the inclusion of the variable improved the model goodness-of-fit measure.

For the MVPLN model developed using NYC pedestrian–vehicle crash dataset, the estimated coefficients are presented in
Table 3 for both fatal and severe injury crashes. Fig. 2 plots the probability density distribution from the sampled parameter
values, which provides a more intuitive representation of the differences between sampled parameters on the two severity
levels. The fatal crashes have a “fatter” distribution, mainly because of fewer observations for fatal crashes, thus lead to
larger variance in the sampled coefficients. Table 4 presents the estimation results of covariance matrix Σ( ) of latent effects.



Table 3
Estimation result of MVPLN model (NYC pedestrian–vehicle crash dataset, underscore marks the variable that is not significant in the severity level).

Variable description Fatal crashes Severe injury crashes

Mean Std. The 95% HDR Elasticity Mean Std. The 95% HDR Elasticity

Constant �2.152 0.205 �2.573 �1.754 0.141 0.083 �0.024 0.308
Demographic characteristics
Tract population in 2000 0.844 0.146 0.542 1.132 0.310 1.083 0.057 0.968 1.199 0.397
Black population proportion �0.376 0.155 �0.688 �0.078 �0.106 0.163 0.056 0.053 0.275 0.046
Population age 65 and over proportion 1.247 0.614 0.038 2.462 0.148 �1.464 0.305

�2.073
�0.846 �0.174

Population aged 25 years and over with high school
education proportion

0.971 0.395 0.188 1.770 0.317 0.496 0.156 0.189 0.808 0.162

Land use attributes
Industrial/manufacturing land use proportion 1.864 0.554 0.701 2.935 0.073 3.071 0.201 2.671 3.475 0.120
Number of schools 0.056 0.026 0.004 0.107 0.060n 0.038 0.010 0.018 0.059 0.041n

Road network and intersection operation
characteristics

Signalized intersections 0.486 0.074 0.340 0.636 0.273 0.572 0.032 0.508 0.636 0.321
Length of roads in miles in tract (in 10 miles) �0.225 0.091 �0.4140 �0.055 �0.086 �0.386 0.044

�0.476
�0.300 �0.148

Primary roads without limited access proportion 0.483 0.302 �0.123 1.055 0.015 0.338 0.129 0.075 0.587 0.010
Local, neighborhood, and rural roads proportion �0.421 0.091 �0.600 �0.238 �0.460 �0.259 0.033 �0.326 �0.195

�0.282
Roads with 5 or more travel lanes proportion 3.169 1.258 0.604 5.609 0.016 2.036 0.541 0.949 3.110 0.010
Roads with lane widths less than 30 ft proportion �0.467 0.223 �0.909 �0.028 �0.109 �0.470 0.089 �0.649 �0.295

�0.109
Truck routes proportion 0.789 0.188 0.401 1.169 0.142 0.552 0.076 0.403 0.700 0.099
Subway stations in tract 0.053 0.067 �0.085 0.186 0.012n 0.107 0.025 0.055 0.157 0.024n

Summary statistics
Number of observations θ( ̅ )LL D̅ pD DIC

2183 �5298.72 14,785.91 4188.48 18,974.40

Note: 1. High density region (HDR) is used to inspect whether the parameters differ from zero in a statistically significant way, which is computed as the
region that contains 95% (2.5–97.5%) sampled parameter values.
2. The elasticity reported in the table is the average elasticity of frequency λ evaluated at the posterior mean of the model parameters.
3. As the number of schools and subway stations are discrete integer valued variables, the elasticity is not directly applicable. Hence we just report the
computed value (marked in n). However, as the tract population is in 10,000, and the signalized intersections are in 10, thus we treat these variables as
continuous.
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Univariate Poisson Lognormal (PLN), univariate Poisson and univariate Negative Binomial (NB) models were estimated for
the same set of explanatory variables (see Table 7). The same set of results for the MVPLN model that developed using the
Washington State highway injury dataset are also reported in Fig. 3 and Tables 5, 6 and 8. The following subsections briefly
discuss the goodness-of-fit characteristics, correlation among severity levels and parameter estimates.

5.1. Model fitting and comparison

The DIC was used as the model comparison measure in developing the MVPLN model. The final model has the speci-
fication with the lowest DIC. Tables 3 and 5 provide the DIC value for the two MVPLN models, while the DIC values for the
corresponding univariate PLN models can be found in Tables 7 and 8. Furthermore, the log-likelihood evaluated at the
posterior means of the parameters of the MVPLN model and the two univariate PLN models are computed. The log-like-
lihood at convergence of univariate Poisson and Negative Binomial are also reported, which serve as a comparison purpose.

For the NYC pedestrian–vehicle crash model, compared with the DIC of 6616.84 under fatal PLN model and 12,526.14
under severe injury PLN model, the DIC statistics for the MVPLN model is only 18,974.40. A significant drop of 168.58 is
observed compared with the sum of the two univariate models. For the Washington State highway injury model, an even
large drop of 799.59 in DIC value is observed for the MVPLN model (4852.18) compared with three univariate PLN coun-
terparts (2138.60, 1748.47 and 1764.70 respectively). The larger drop in DIC is likely related to higher level of correlation
among severity levels in Washington State highway injury dataset (see Table 6). The DIC statistics of the MVPLN model for
both of the pedestrian–vehicle and highway-injury dataset clearly indicates that MVPLN provides a much better fit com-
pared with the univariate PLN models that ignore the underlying correlation among severity levels. Furthermore, it is
observed that when the correlation among severity levels are high, the estimated coefficients in MVPLN model have higher



Fig. 2. Probability density distribution of the sampled parameters (NYC pedestrian–vehicle crash dataset).

Table 4
Estimation result of covariance matrix (Σ) of latent effects (NYC pedestrian–vehicle crash dataset).

σij Mean Std. Err. The 95% HDR

σ11 (fatal) 0.270 0.051 0.179 0.383
σ σ,12 21 0.185 0.025 0.138 0.237
σ22 (severe injury) 0.253 0.020 0.215 0.296
Correlation
ρ σ σ σ= /12 11 22 0.710 0.058 0.581 0.812
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precision than univariate PLN models. This can be shown in the model comparison results of the Washington State highway
injury dataset in Table 8, that the estimated standard deviation of coefficients for MVPLN model are always lower than the
corresponding PLN model.

By comparing the log-likelihood evaluated at the posterior mean of parameters, the MVPLN model also outperforms the
univariate PLN, Poisson and Negative Binomial models. For the NYC pedestrian–vehicle crash dataset, the MVPLN model
provides a 79.4 greater of log-likelihood value than the sum of the two univariate PLN models, 513.9 and 209.5 greater than
the sum of the two univariate Poisson and Negative Binomial models. For the Washington State highway injury dataset, the
MVPLN provides a 400.21 greater of log-likelihood value than the sum of the three univariate PLN models, 989.75 and
321.38 greater than the sum of the three univariate Poisson and Negative Binomial models. All of the above statistics
demonstrate the superiority of MVPLN in modeling crash data with multiple correlated severity levels, in which cases using
univariate models would lead to less accurate parameter estimates and even biased policy recommendations.

5.2. Correlation among latent effects across severity levels

The correlation values of latent effects among different severity levels were also quantified for the two dataset in-
vestigated. This correlation is a measure of dependencies for the latent effects of different severity levels, rather than the
correlation directly obtained from crash counts, which is trivial to compute. High level of correlations among severity levels
are observed in this study. For the correlation among fatal and severe injury pedestrian–vehicle crashes at census tract level,
the correlation value of the latent effects is found to be 0.710, and the 95% high density region (0.5812, 0.8122) shows that
the estimated correlation is highly significant (see Table 4). The level of correlation in latent effects between fatal and severe
injury pedestrian–vehicle crashes in this paper is found similar with the correlation values for vehicle crashes in the lit-
erature. Park and Lord (2007) found that the correlation between fatal and incapacitating-injury crashes was 0.7035, and
correlation between fatal and non-incapacitating injury crashes was 0.6904. A study by Aguero-Valverde and Jovanis (2009)
reported the correlation between fatal and incapacitating-injury crashes was 0.542, and the correlation between fatal and



Table 5
Estimation results of MVPLN model (Washington State highway injury dataset, underscore marks the variable that is not significant in the severity level).

Variable description No-injury crashes Possible injury crashes Evident Injury Crashes

Mean Std. The 95% HDR Elasticity Mean Std. The 95% HDR Elasticity Mean Std. The 95% HDR Elasticity

Constant �2.744 0.639 �3.991 �1.475 �5.768 1.041 �7.789 �3.716 �1.864 0.915 �3.686 �0.068
Explanatory Variables
Highway segment length in miles 0.140 0.009 0.123 0.157 0.341 0.145 0.015 0.115 0.176 0.353 0.161 0.011 0.140 0.182 0.390
Logarithm of AADT per lane 0.592 0.061 0.472 0.713 5.108 0.856 0.099 0.654 1.053 7.392 0.368 0.088 0.194 0.546 3.179
Maximum grade difference 0.062 0.015 0.033 0.093 0.190 0.030 0.025 �0.019 0.078 0.091 0.105 0.022 0.063 0.149 0.319
Number of horizontal curves per mile �0.174 0.036 �0.246 �0.103 �0.250 �0.251 0.055 �0.361 �0.139 �0.362 �0.249 0.053 �0.357 �0.145 �0.359
Percentage of trucks in traffic �0.027 0.007 �0.041 �0.014 �0.385 �0.054 0.011 �0.076 �0.032 �0.765 �0.028 0.009 �0.046 �0.009 �0.393
Low precipitation indicator �0.501 0.093 �0.690 �0.315 – �0.667 0.164 �0.996 �0.349 – �0.343 0.132 �0.614 �0.083 —

Heavy snow fall indicator �0.212 0.083 �0.377 �0.041 – �0.164 0.136 �0.426 0.106 – �0.254 0.125 �0.509 �0.008 —

Local road indicator �0.338 0.077 �0.492 �0.187 – �0.188 0.118 �0.428 0.044 – �0.293 0.116 �0.521 �0.057 —

Summary statistics
Number of Observations θ( ̅ )LL D̅ pD DIC

275 �1636.503 4062.59 789.59 4852.18

Note: The last four variables are binary indicator variables, thus the elasticity is not directly applicable and not presented.
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Table 6
Estimation results of covariance matrix (Σ) of latent effects (Washington State highway injury dataset).

Mean Std. Err. The 95% HDR

σ11 (No-injury) 0.663 0.086 0.508 0.855
σ σ,12 21 0.657 0.090 0.498 0.859
σ σ,13 31 0.555 0.077 0.417 0.722
σ22 (Possible injury) 0.657 0.090 0.498 0.859
σ σ,23 32 0.797 0.128 0.571 1.091
σ33 (Evident injury) 0.588 0.095 0.419 0.792

Correlation
ρ σ σ σ= /12 12 11 22 0.906 0.023 0.853 0.944

ρ σ σ σ= /13 13 11 33 0.891 0.028 0.827 0.938

ρ σ σ σ= /23 23 22 33 0.868 0.036 0.784 0.929

Table 7
Estimated coefficients comparison of MVPLN, Univariate Poisson-lognormal (PLN), Univariate Poisson, and Negative Binomial (NB) Model (NYC pedestrian–
vehicle crash dataset, values in each cell are estimated coefficient and the standard deviation in parentheses).

Variable description MVPLN PLN Poisson NB

Fatal crashes
Constant �2.152(0.205) �2.059(0.205) �1.974(0.193) �2.078(0.232)
Tract population in 2000 0.844(0.146) 0.800(0.139) 0.790(0.129) 0.776(0.163)
Black population proportion �0.376(0.155) �0.383(0.156) �0.388(0.151) �0.364(0.160)
Population age 65 and over proportion 1.247(0.614) 1.263(0.605) 1.281(0.590) 1.274(0.708)
Population aged 25 years and over with high school education proportion 0.971(0.395) 0.948(0.383) 0.919(0.384) 0.995(0.451)
Industrial/manufacturing land use proportion 1.864(0.554) 1.771(0.518) 1.738(0.514) 1.752(0.572)
Number of schools 0.056(0.026) 0.054(0.026) 0.054(0.025) 0.053(0.029)
Signalized intersections 0.486(0.074) 0.468(0.075) 0.456(0.073) 0.506(0.069)
Length of roads in miles in tract (in 10 miles) �0.225(0.091) �0.232(0.099) �0.239 (0.096) �0.186 (0.081)
Primary roads without limited access proportion 0.483(0.302) 0.464(0.303) 0.526(0.280) 0.514(0.340)
Local, neighborhood, and rural roads proportion �0.421(0.091) �0.437(0.095) �0.432(0.090) �0.400(0.078)
Roads with 5 or more travel lanes proportion 3.169(1.258) 3.033(1.263) 3.033(1.208) 3.236(1.548)
Roads with lane widths less than 30 feet proportion �0.467(0.223) �0.443(0.219) �0.408(�0.218) �0.438(0.237)
Truck routes proportion 0.789(0.187) 0.761(0.183) 0.767(0.180) 0.760(0.214)
Subway stations in tract 0.053(0.067) 0.053(0.064) 0.052(0.061) 0.061(0.062)

Log-likelihood ( θ( ̅ )LL for Univariate PLN) — �1224.09 �1394.03 �1388.63
DIC — 6616.84 Dispersion: 0.328

Severe Injury Crashes
Constant 0.141(0.083) 0.138(0.082) 0.326(0.067) �0.166(0.101)
Tract population in 2000 1.083(0.057) 1.083(0.058) 0.996(0.042) 1.083(0.078)
Black population proportion 0.163(0.056) 0.164(0.056) 0.138(0.047) 0.201(0.071)
Population age 65 and over proportion �1.464(0.305) �1.423(0.298) �1.345(0.250) �1.445(0.363)
Population aged 25 years and over with high school education proportion 0.496(0.156) 0.490(0.152) 0.525(0.129) 0.648(0.200)
Industrial/manufacturing land use proportion 3.071(0.201) 3.063(0.202) 2.853(0.155) 3.072(0.314)
Number of schools 0.038(0.010) 0.038(0.010) 0.033(0.008) 0.032(0.015)
Signalized intersections 0.572(0.032) 0.571(0.032) 0.551(0.026) 0.803(0.039)
Length of roads in miles in tract (in 10 miles) �0.386(0.044) �0.388(0.043) �0.441(0.038) �0.223(0.020)
Primary roads without limited access proportion 0.338(0.129) 0.336(0.128) 0.353(0.099) 0.214(0.191)
Local, neighborhood, and rural roads proportion �0.259(0.033) �0.260(0.033) �0.281(0.028) �0.164(0.019)
Roads with 5 or more travel lanes proportion 2.036(0.541) 2.019(0.536) 1.670(0.434) 2.430(0.790)
Roads with lane widths less than 30 feet proportion �0.470(0.089) �0.465(0.089) �0.459(0.074) �0.368(0.103)
Truck routes proportion 0.552(0.076) 0.555(0.074) 0.522(0.062) 0.513(0.105)
Subway stations in tract 0.106(0.025) 0.106(0.025) 0.090(0.019) 0.127(0.034)

Log-likelihood ( θ( ̅ )LL for Univariate PLN) — �4154.03 �4418.547 �4119.58
DIC — 12,526.14 Dispersion: 0.343
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non-incapacitating injury was 0.584. El-Basyouny and Sayed (2009) reported the correlation between no-injury crashes and
injuries and fatal (IþF) crashes was 0.758.

For vehicle crashes on highway segments of Washington State, the correlation values of the latent effects were estimated
to be 0.906 between the no-injury and possible injury crashes; 0.891 between no-injury and evident injury crashes; and



Fig. 3. Probability density distribution of the sampled parameters (Washington State highway injury dataset).
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0.868 between possible and evident injury crashes (see Table 6). All of the estimated correlation values are found to be
highly significant. The reason for the higher correlation level in the highway injury data compared with pedestrian–vehicle
crash data might due to the relatively vague boundary among the three injury severity levels. The correlation results confirm
the intuition that correlations exist among severity levels for both pedestrian–vehicle crashes and highway vehicle crashes.
In addition, it suggests the necessity of jointly modeling crashes at multiple severity levels. Univariate models that ignore
the underlying correlations among severity levels may lead to misspecification of models and inappropriate result
interpretations.

5.3. Parameter estimates

5.3.1. NYC pedestrian–vehicle crash dataset
Table 3 and Fig. 2 summarize the coefficient estimates and corresponding statistics for the MVPLN model using NYC

pedestrian–vehicle crash dataset. The results indicate that, the census tracts with higher population are more likely to have
higher crash frequency both at fatal and severe levels of injuries. Since we do not have the traffic volume variable in our
model, population is an indirect measure of number of pedestrians and traffic volume in our study. Previous studies
(Narayanamoorthy et al., 2013; Ukkusuri et al., 2011; LaScala et al., 2000) also found population density as a significant
variable. The average elasticity of the expected crash frequency suggests that 1% increase in 10,000 population increases the
expected frequencies of fatal crashes by 0.31% and severe injury crashes by 0.397%. The proportion of black population is
often considered as an indicator of low-income population in different regions of the United States. Based on previous
studies it is possible to correlate low-income neighborhoods with lower level of educated populations, and higher number
of pedestrians. In our study, the proportion of black population is found to have very different effects on fatal and severe
injury crash frequencies, and clear difference can be observed in the probability density plot (Fig. 2). Results show that,
higher proportion of black population is expected to increase the frequency of severe injury crashes, while decrease the
frequency of fatal crashes. The average elasticity suggests that 1% increase in the black population proportion will decrease
the fatal crash frequency by 0.106%, but will increase the expected severe injury crash frequency by 0.046%. The decrease in
likelihood of fatal crashes is likely to be associated with lower driving speed in such neighborhood with poorer condition of
transportation facilities. Similarly, census tracts with higher proportion of population with high school level education are
found more prone to pedestrian vehicle crashed at both level of severities.

Further, census tracts with higher proportion of elderly population (age 65 years or above) are more prone to fatal
crashes. Again completely different parameter probability density distribution is observed, that the distribution for fatal
crashes peaks around 1.5 while for severe injury crashes, peaks around �1.5. This is intuitive because most crashes



Table 8
Estimated Coefficients Comparison of MVPLN, Univariate Poisson-lognormal (PLN), Univariate Poisson, and Negative Binomial (NB) Model (Washington
State highway injury dataset, values in each cell are estimated coefficient and the standard deviation in parentheses).

Variable Description MVPLN PLN Poisson NB

No-injury crashes
Constant �2.744(0.639) �2.885(0.666) �2.699(0482) �3.798 (1.268)
Highway segment length in miles 0.140(0.009) 0.144(0.009) 0.137(0.006) 0.185(0.024)
Logarithm of AADT per lane 0.592(0.061) 0.603(0.063) 0.590(0.046) 0.677(0.123)
Maximum grade difference 0.062(0.015) 0.064(0.015) 0.059(0.011) 0.075(0.034)
Number of horizontal curves per mile �0.174(0.036) �0.174(0.037) �0.168(0.025) �0.135(0.068)
Percentage of trucks in traffic �0.027(0.007) �0.027(0.007) �0.027(0.005) �0.023(0.014)
Low precipitation indicator �0.501(0.093) �0.501(0.095) �0.463(0.072) �0.433(0.178)
Heavy snow fall indicator �0.212(0.083) �0.205(0.086) �0.192(0.063) �0.111(0.199)
Local road indicator �0.338(0.077) �0.329(0.080) �0.327(0.057) �0.274(0.168)

Log-likelihood ( θ( ̅ )LL for Univariate PLN) — �804.42 �1251.78 �821.04
DIC — 2138.60 Dispersion: 0.522

Possible injury crashes
Constant �5.768(1.041) �5.972(1.108) �5.533(0.858) �6.499(1.939)
Highway segment length in miles 0.145(0.015) 0.157(0.016) 0.141(0.011) 0.195(0.031)
Logarithm of AADT per lane 0.856(0.099) 0.872(0.105) 0.835(0.082) 0.914(0.188)
Maximum grade difference 0.030(0.025) 0.035(0.025) 0.032(0.018) 0.038(0.044)
Number of horizontal curves per mile �0.251(0.055) �0.253(0.056) �0.258(0.043) �0.189(0.089)
Percentage of trucks in traffic �0.054(0.011) �0.055(0.012) �0.052(0.009) �0.056(0.019)
Low precipitation indicator �0.667(0.164) �0.699(0.174) �0.637(0.139) �0.598(0.261)
Heavy snow fall indicator �0.164(0.136) �0.198(0.145) �0.196(0.112) �0.023(0.245)
Local road indicator �0.188(0.118) �0.184(0.125) �0.196(0.093) �0.135(0.250)

Log-likelihood ( θ( ̅ )LL for Univariate PLN) — �614.22 �681.73 �538.17
DIC — 1748.47 Dispersion: 0.652

Evident injury crashes
Constant �1.864(0.915) �2.047(0.951) �1.818(0.738) �2.611(1.576)
Highway segment length in miles 0.161(0.011) 0.164(0.012) 0.152(0.008) 0.195(0.026)
Logarithm of AADT per lane 0.368(0.088) 0.378(0.092) 0.368(0.072) 0.428(0.149)
Maximum grade difference 0.105(0.022) 0.108(0.022) 0.098(0.017) 0.114(0.036)
Number of horizontal curves per mile �0.249(0.053) �0.241(0.053) �0.235(0.042) �0.212(0.079)
Percentage of trucks in traffic �0.028(0.009) �0.027(0.010) �0.026(0.008) �0.026(0.016)
Low precipitation indicator �0.343(0.132) �0.358(0.140) �0.347(0.109) �0.308(0.227)
Heavy snow fall indicator �0.254(0.125) �0.222(0.131) �0.240(0.101) �0.063(0.194)
Local road indicator �0.293(0.116) �0.296(0.118) �0.306(0.091) �0.251(0.185)

Log-likelihood ( θ( ̅ )LL for Univariate PLN) — �620.07 �692.74 �598.67
DIC — 1764.70 Dispersion: 0.466
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involving elderly individuals will have higher likelihood to result in fatal crashes. It is observed that census tracts with
higher number of schools are more vulnerable to pedestrian–vehicle crashes, and the impact is found to be similar for both
severity levels (probability density distribution overlaps). The studies by Loukaitou-Sideris et al. (2007) and Nar-
ayanamoorthy et al. (2013) had similar results with the explanation that number of schools can be an indirect exposure
related positive effect for the crash frequency in the census tract.

For land use related attributes, it is found that census tracts with higher proportion of industrial or manufacturing land
use are more likely to have more pedestrian–vehicle crashes. The results show the same trends for fatal and severe injury
crashes, and greater impact is found for severe injury crashes (Fig. 2 and higher elasticity value). Similar findings were also
reported by Kim and Yamashita (2002) and Ukkusuri et al. (2011) and Narayanamoorthy et al. (2013). The reason could be
associated with higher volume of truck traffic. Trucks often have larger blind spot and are more likely to result in more
severe crashes compared with other vehicle types. This is confirmed in the result of proportion of truck routes variable, in
which its average elasticity suggests that 1% increase in the truck routes proportion will increase the expected frequency of
fatal crashes by 0.142% and severe injury crashes by 0.099%.

Very similar impact of road geometry related factors, such as presence of roadways with five or more lanes and lane
width smaller or equal to 30 ft are found in both severity levels, as their probability density distributions almost overlaps,
especially for the lane width indicator (Fig. 2). This suggests the impact of road geometry factors do not differentiate much
between severity levels. This may be because that such kind of pedestrian–vehicle crashes usually occurs when pedestrian
crosses the road, and the level of severity is largely depend on the specific situation of the crash rather than the road
geometries. Roadways with five or more lanes increase the frequency of pedestrian–vehicle crashes, while narrow roadways
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decrease the frequency. This is intuitive, since more lanes increase the chance of pedestrian–vehicle conflict, while narrow
road usually has lower driving speed and cautious drivers. Primary roads without limited access is also found to increase the
pedestrian–vehicle crash frequency and have very similar impact on both of the severity levels. This is intuitive since pri-
mary roads usually have higher travel speed, thus if pedestrian–vehicle conflicts exit in these type of roadways (e.g. without
limited access), it would be more likely to have crashes. Local, neighborhood, and rural roads on the other hand, are found to
have lower likelihood to have pedestrian–vehicle crashes. However, the probability density plot shows the fatal crash
frequency is decreased more than severe injury crashes. The average elasticity shows that 1% increase in the proportion of
these types of roads will decrease the expected frequency of fatal crashes by 0.46% and severe injury crashes by 0.282%. This
may be largely related with the lower traffic volume and vehicle speed on local, neighborhood and rural roads, which leads
to fewer crashes and lower severity levels.

The number of subway stations in the census tracts is found to increase the probability of severe injury pedestrian–
vehicles crashes in census tracts, and the impact on fatal crashes is little. Higher number of subway stations can be an
indirect measure of the pedestrian activities, which may result in higher chance of pedestrian vehicle conflict. However,
since these census tracts are also most congested areas in the city, thus the chance to have fatal crashes is low.

5.3.2. Washington State highway injury dataset
The model estimation results for the supplementary Washington State highway injury dataset are summarized in Table 5

and Fig. 3. There are 8 explanatory variables used in the model, all of which have significant coefficients in all severity levels.
The highway segment length is found to increase the frequency of crashes on all severity levels, which is intuitive. The
logarithm of AADT per lane is found to be positively related to crashes of all severity levels. Similar finding was also reported
in Barua et al. (2014). Higher volume of traffic is observed to have larger impact on possible injury crashes, as the elasticity
for logarithm of AADT per lane is 7.392 for possible injury crashes, while the number is 5.108 for no-injury crashes and 3.179
for evident injury crashes. A large grade difference in highway segment is potentially causing disruption in normal driving
behavior, which is also reflected in the model estimates. The coefficients for maximum grade difference in segment are
positive in all severity levels. It has a particularly large impact on evident injury crashes with the highest coefficient value of
0.105 and 1% increase in grade difference in segment increase the expected evident injury crash frequency by 0.319%, which
is higher than the other two severity levels.

Factors related to decreased driving speed such as number of horizontal curves per mile, local road indicator are again
found to have negative coefficient that decrease crash frequencies in all severity levels. An interesting finding is that the
percentage of truck in traffic is found to decrease the crash frequencies in all severity levels on highways, whereas it is found
to increase crash frequencies for pedestrian–vehicle crashes in urban areas. The reason might still be related to the lower
driving speed in these cases on highways. Since trucks usually travel slower than passenger vehicles, higher proportion of
truck traffic would potentially decrease the overall traveling speed of vehicle on the highway segment and lead to more
cautious driving behaviors. Highway segments with lower level of precipitation (≤12 in. per year) are found negatively
related to crashes of all the three injury levels. This might associate with better roadway friction condition. Highway seg-
ments with higher level of snow fall (≥18 in. per year) are also found to have lower number of crashes in all injury levels. The
impacts are almost the same for the three injury levels as their probability density of the sampled parameters almost
overlaps (see Fig. 3). The negative coefficient values for heavy snow fall indicator are likely to pick up the geographical
differences in driving behaviors in response to snow. Since drivers tend to have more cautious driving behavior in response
to heavy snow fall. Similar negative coefficient estimates were also observed in Milton et al. (2008).
6. Concluding remarks

This study investigated the potential of using Multivariate Poisson-lognormal (MVPLN) model in multi-severity level
crash data analysis. Two datasets were used to fully demonstrate the analytical capability of the MVPLN model in different
applications. The primary dataset used is a comprehensive pedestrian–vehicle crash dataset which has both number of fatal
and severe injury crashes from 2183 census tracts in New York City. Variables involving demographic characteristics, land
use attributes and road network and intersection operation characteristics are investigated in this work. To address the
limitation of only containing two severity levels in the NYC pedestrian–vehicle crash dataset, a supplementary dataset of
highway crash data with three severity levels (no-injury, possible injury and evident injury) from 275 roadway segments in
Washington State was used. Two MVPLN models were developed for the two datasets and the final models reported were
developed by selecting the models that yield the lowest DIC values.

A new parallel sampling scheme was proposed and implemented in this study. A MATLAB code implementing the
parallel sampling scheme was developed to estimate the MVPLN models in this paper. In the actual estimation, the par-
allelized scheme sped up the estimation process by 3 times when 8 parallel threads were used, and higher performance can
be achieved if introducing more parallel threads in the computation. The goodness-of-fit measures such like DIC and log-
likelihood evaluated at posterior mean of parameters were also computed. The improved estimation approach and tool
developed in this paper will provide researchers and practitioners an efficient way to implementing MVPLN model in
practice.

The MVPLN models offer theoretically sound approach to jointly model different severity levels’ crashes and account for



X. Zhan et al. / Analytic Methods in Accident Research 8 (2015) 45–60 59
the general structured correlation among different severity levels. We observed high correlation level for different severity
levels in both of the two different crash datasets. For NYC pedestrian–vehicle crash dataset, the correlation value between
pedestrian–vehicle fatal and severe injury crashes was 0.710. And for Washington State highway injury dataset, the cor-
relation values among the three severity levels: no-injury, possible and evident injury are found to be 0.914 (no-injury and
possible injury), 0.889 (no-injury and evident injury), 0.863 (possible and evident injury). Such high level of correlation from
two different types of crash data clearly implied the existence of correlation among different severity levels. This demon-
strates the necessity of jointly modeling crashes at multiple severity levels using multivariate count models. A comparison
study of MVPLN model with univariate Poisson Lognormal, Poisson and Negative Binomial models was conducted, and
superior fitting results were confirmed by investigating the DIC and log-likelihood values, which ruled out the applicability
of using univariate models for both of the studied datasets. The superior fitting to the data will contribute to a better
understanding of the underlying factors that impact the occurrence of crashes in both urban streets and highways.
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