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Abstract Personal mobility carbon allowance (PMCA) schemes are designed to
reduce carbon consumption from transportation networks. PMCA schemes influence
the travel decision process of users and accordingly impact the systemmetrics includ-
ing travel time and greenhouse gas (GHG) emissions. We develop a multi-user class
dynamic user equilibrium model to evaluate the transportation system performance
when PMCA scheme is implemented. The results using Sioux-Falls test network indi-
cate that PMCA schemes can achieve the emissions reduction goals for transportation
networks. Further, users characterized by high value of travel time are found to be
less sensitive to carbon budget in the context of work trips. Results also show that
PMCA scheme can lead to higher emissions for a path compared with the case with-
out PMCA because of flow redistribution. The developed network equilibrium model

This work has been initiated and completed at Purdue University, West Lafayette when the first
author was completing his graduate studies. This work does not represent any view of Oak Ridge
National Laboratory managed by UT-Battelle for the Department of Energy. This work did not have
any kind of financial support from the Oak Ridge National Laboratory managed by UT-Battelle for
the department of Energy

� Satish V. Ukkusuri
sukkusur@purdue.edu

H. M. Abdul Aziz
aziz.husain.nexus@gmail.com; azizh@ornl.gov

Xianyuan Zhan
zhanxianyuan@purdue.edu

1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, 1 Bethel
Valley Road, Oak Ridge, TN 37830, USA

2 Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11067-016-9334-x-x&domain=pdf
http://orcid.org/0000-0001-8754-9925
mailto:sukkusur@purdue.edu
mailto:
mailto:zhanxianyuan@purdue.edu


H. M. Abdul Aziz et al.

allows to examine the change in system states at different carbon allocation levels and
to design parameters of PMCA schemes accounting for population heterogeneity.

Keywords Low carbon transportation · Carbon reduction goals · Dynamic user
equilibrium · GHG emissions · Personal mobility carbon credits

1 Background and motivation

City leaderships across the globe are striving to reach the target level of greenhouse
gas (GHG) emissions and energy consumption through strategies that include pro-
moting electric vehicles, energy efficient appliances, energy efficient transportation
systems, minimizing building energy consumptions, coordinating smart grid with
renewable energy sources, and so on. Minimizing GHG emissions and fuel consump-
tion from road transportation sector is particularly of interest because of its signif-
icant contribution (EIA (2014) Annual Energy Outlook 2014) to GHG emissions
(about 27 %) and carbon-based fuel consumption (about 28 %). Besides the advance-
ments in engine and fuel technologies, behavioral policies can play a significant role
to reduce GHG emissions and achieve the desired low carbon living goals in cities.
Personal Carbon Allowance (PCA) schemes are a class of energy policies that are
designed based on incentives that influence energy behavior patterns at household
level (Fleming and Chamberlin 2011; Fawcett 2010) including building and travel
related energy consumptions.

In our previous work (Aziz et al. 2015), we proposed and analyzed a carbon
allowance scheme, namely the personal mobility carbon allowance (PMCA) scheme
that deals with the daily travel activities at the household level. The travel behavior
data were collected through a carefully designed experimental game and economet-
ric models were estimated to understand how an individual makes travel decisions
under PMCA scheme. This research focuses on the impact of PMCA at network level.
Users in a transportation network will exhibit heterogeneity in terms of travel deci-
sions under PMCA scheme. As a result, the traffic state for a transportation network
will evolve because the generalized cost functions for multi-user groups will lead to
a distinct dynamic equilibrium condition capturing both travel and carbon cost.

Figure 1 provides a general overview of the PMCA scheme. A regulatory author-
ity such as city leadership determines the total allowable carbon consumption for
a system defined with geographical and temporal boundaries. The total allowable
consumption is converted into carbon units and allocated among the users in the sys-
tem. The users spend the carbon credits based on their travel needs. The credits are
charged based on the carbon rating of the fuel accounting for its generation cost. For
instance, charging an electric vehicle using grid electricity during day time can cost
0.7 per kWh (Fleming and Chamberlin 2011). Users can sell the surplus units and
can buy additional units from an auction-based market. Demand and availability of
carbon units determine the unit price in the market.

Travel decisions under PMCA will be affected by the amount of carbon credits to
be charged on a trip in addition to travel cost. Further, the PMCA system affects the
travel behavior in an entirely different manner due to the existence of carbon market
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Fig. 1 Personal Mobility Carbon Allowance (PMCA) scheme: carbon budget for daily travel

and initial carbon allocation mechanism. The users have to buy carbon credits from
the market with real money in case the initial free quota is diminished. At different
conditions describing the price and availability of carbon credits, the decision mak-
ing process of the users will be different. The remaining budget, market price of the
credits, and pro-environmental attitudes are few of the influencing factors Consider-
ation of carbon cost in addition to travel cost for path and departure time choice will
form a new generalized cost function. In Aziz et al. (2015), we estimated the effect of
carbon market, initial allocation, and user heterogeneity (in terms of value of travel
time and trip purpose) through econometric models using the data from our designed
experimental game. The results in (Aziz et al. 2015) provide generalized cost func-
tions specific to trip type and user group categorized based on value of travel time
(VOTT).

The objective of this research is to develop a multi-user dynamic equilibrium based
network model where each user class has a distinct value of travel time, trip demand,
different sensitivity to perceived carbon cost. Figure 2 describes a general frame-
work to analyze the state of transportation network under PMCA scheme. The data
through experimental game and estimating generalized cost function are described in
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Fig. 2 Generalized framework to network analysis under PMCA scheme. Experimental game and data
collection components are described in Aziz et al. (2015)

Aziz et al. (2015). This research focuses primarily on understanding the network-wide
impacts due to a PMCA scheme as a result of behavioral adjustments at the house-
hold level. To estimate the impacts, a state of the art dynamic network equilibrium
model will be developed in this research. The research goals are as follows:

(A) To develop a multi-class dynamic user equilibrium model accounting the for
the travel behavior under personal mobility carbon allowance (PMCA) scheme.

(B) To explore and investigate the flow redistribution (path level) under the PMCA
system accounting for several dimensions of user heterogeneity.

(C) To examine the change in travel costs and carbon consumption at OD, user
class, and path levels under PMCA system at different initial allocations.

2 Related Works and Contributions of this Research

The idea of tradable allowances (or permits) was described in the early works by
Coase (1960), Dales (1968), Montgomery (1972), and Verhoef et al. (1997). Trad-
able allowance systems minimize and equalize the marginal cost of compliance
across the entities (agents) without requiring detailed information since the market
determines the price (Tietenberg 2003). Cap and trade schemes are a special form
of tradable allowance systems with an upper limit on total emissions featuring the
ability to trade between the users. The US sulfur dioxide allowance trading system
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(Burtraw 2002), the European Union Emission Trading Scheme (EU-ETS), Chicago
Climate Exchange, the New England Regional GHG Initiative, Global Warming
Solutions Act of 2006 (AB32), and the Kyoto Protocol (Perrels 2010) are some
examples that involve upstream players such as manufacturers, regions, nations, and
continents.

More recently trading schemes are proposed aiming at the GHG emissions and
energy consumptions at household level (Fleming 1997; Hillman and Fawcett 2008;
Niemeier et al. 2008). One class of these schemes, namely Personal Carbon Trad-
ing (PCT), is recognized by the researchers as an effective instrument to minimize
emissions in a cost effective way (Roberts and Thumim 2006; Harwatt et al. 2011).
Although debates are still on-going regarding the comparative effectiveness between
carbon tax and PCT schemes (Keay-Bright and Fawcett 2005; Raux andMarlot 2005;
Starkey 2012b), the unique capabilities to link the end users of energy to the scheme
and to accommodate the behavioral aspects of the users make PCT a more attractive
scheme (Fleming and Chamberlin 2011; Starkey and Anderson 2005; Fawcett and
Parag 2010). Two key concerns related to PCT schemes are: initial setup cost and
public acceptability (Starkey 2012b; DEFRA 2008; Howell 2012). A critical review
of PCT schemes indicates cost feasibility, higher public adaptability leading to
acceptability over time, and higher level of equity compared with alternative taxation
policies (Fawcett 2010, 2012; Connection TLE 2009; Parag and Strickland 2010).

Initial allowance of carbon credits and the equity associated with the distribu-
tion stoked the interests among the researchers (Eyre 2010; Fawcett and Parag 2010;
Starkey 2008). Most of the studies proposed per capita equal allowance and some pro-
vide special distributions to account for the children (Fleming 1997; Bottrill 2006).
Arguments can be given against (Starkey 2012a) and for Fleming and Chamberlin
(2011), Fawcett (2012), Dresner and Ekins (2004), and Thumim and White (2008)
per capita initial distribution. Due to limited number of studies and lack of exper-
imental data, it is not conclusive whether initial per capita distribution is the most
equitable way to allocate initial allowances. Again, this is not the key goal of the pro-
posed work. Our model assumes equal allowances for each user in the transportation
network.

A group of schemes focus exclusively on reducing GHG emissions and energy
consumption from personal travel (Raux and Marlot 2005; Grayling and Gibbs 2006;
Keppens and Vereeck 2003; Wadud 2011; Kitthamkesorn et al. 2016). The scope of
most of these studies are limited to aggregate level analysis of behavioral change and
they do not capture the changes in travel decisions or patterns at household or indi-
vidual level. Additionally, the data used are obtained in the form of either opinions or
responses from questionnaire-based surveys (Capstick and Lewis 2010; Fawcett and
Parag 2010; Bristow et al. 2010).

Further, mobility trading schemes are rigorously analyzed as an alternative to tolls
on road links (Nagurney and Zhang 2001; Yang and Wang 2011; Nie and Yin 2013;
Nie 2012). These studies provide insights on the resulting state of the transporta-
tion systems in terms of flow distribution and travel time. In most cases, the focus
is not on emissions or energy consumption. Only exceptions are the works by Yin
and Lawphongpanich (2006) and Chen and Yang (2012) that apply marginal cost
pricing technique to determine the externalities from emissions and by Aziz and
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Ukkusuri (2013) that provides a tradable emissions credit scheme for transportation
network. In addition network level models with environmental considerations exist
(Lin et al. 2016a; Mascia et al. 2016; Lin et al. 2016b; Aziz and Ukkusuri 2012).
These approaches are conceptually different from the PMCA scheme and do not
incorporate the market behavior into generalized cost function.

2.1 Contributions

This research offers novelty in several ways and addresses limitations of previous
works. First, unlike qualitative analysis in Wadud (2011), Bristow et al. (2010), and
Fawcett and Parag (2010) we provide a rigorous quantitative model accounting for
the auction market mechanism obtained from experimental games (Aziz et al. 2015).
The generalized cost function directly reflects the travel behavior and activities in
the auction market within the designed experiment (see Section 4.4). Second, the
developed model allows analysis of multiple days and each day with multiple DUE
episodes (Section 4.7). Also, the generalized cost function explicitly considers the
effect of PMCA and budgeting behavior of households at a disaggregate level con-
sidering the heterogeneity both in auction market and daily travel decisions. Third,
PMCA is conceptually different frommobility credit schemes (Yang andWang 2011;
Nie and Yin 2013; Nie 2012) where the price of unit credit is endogenously com-
puted from the model and this follows the theme of marginal cost pricing (Hearn and
Ramana 1998; Aziz and Ukkusuri 2013). This research considers the explicit impact
of the auction market and the effect is incorporated exogenously in the generalized
cost function which is estimated directly from the data (Aziz et al. 2015). The frame-
work (see Fig. 2) integrates the decision making process at household level and the
impact on the system at network level in terms of congestion and emissions account-
ing for heterogeneity at originating from the dynamics of carbon trading. Finally,
this is one of the first network equilibrium models capturing the impacts of carbon
allowance scheme at the household level.

3 Multi-Class Characterization

This study considers user heterogeneity based on income level, trip demand, and
driving patterns. The value of travel time (VOTT) is often used an indirect measure
for income level (Yang and Huang 2004; Yang and Bell 1998; Verhoef and Small
2004; Kockelman and Kalmanje 2005). Further, carbon consumption through fuels
are directly influenced by the driving patterns of the users on the road. Generally,
higher fluctuation in the speed profile leads to higher emissions in traffic networks
(Ahn et al. 2002; Barth and Boriboonsomsin 2008). Finally, emissions (accordingly
the carbon consumption) from on-road vehicles depend on the congestion state of
the network. The congestion state of a traffic network is highly dominated by the
travel choices (Ahn and Rakha 2008) by the users (e.g., route and departure time
choice) of the network. The emissions in a highly congested network is significantly
different from that of a non-congested network. Modeling the effect of congestion
on carbon credit cost and its impact on route and departure time choice behavior
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is central in this research and we have a detailed discussion in the methodology
section. Also, the travel decisions are impacted by trip purpose, length of the trip, and
time-of-the-day.

The travel decision of a user also depends on the remaining carbon credits in
her quota at that particular point of time. Additional carbon credits are added at the
end of the week as per PMCA system. A traveler with higher credits (with a prede-
fined budget for personal travel and household energy consumption) is more likely
to have less sensitivity for emissions (i.e., carbon credit spending) at the end of a
week. Based on this attributes mentioned above we define each user class based
on five attributes:(a) value of travel time (VOTT), (b) purpose of trip making (e.g.,
work vs. non-work), (c) available carbon credits prior to making the trip decision,
(d) remaining money to spent in the carbon market to buy or sell credits, and (e)
value of carbon credits relative to travel time cost. More details are provided in
Sections 6.1.1 and 6.1.2.

4 Methodology

The next few sections provide details on the key components of the model
that include: the network loading model, travel time estimation, quantification of
CO2 emissions to find carbon credit consumption, characterization of multi-user
classes,and the dynamic user equilibrium conditions under PMCA.

4.1 Dynamic Network Loading Under PMCA Scheme

Our formulation embeds a spatial queue based traffic flow model, namely the cell
transmission model(CTM), that computes the travel cost and carbon credit cost for
the paths in the network. The cell transmission model is originally proposed by
Daganzo (1994) and Daganzo (1995). However many variants of the model exist
in the literature (Szeto 2013; Carey et al. 2015; Nezamuddin and Boyles 2015) and
CTM is widely used as dynamic network loading models. This research follows the
models by Han et al. (2011) and Ukkusuri et al. (2012). The unique attributes of our
model are as follows:

(i) Generalized cost structure to capture PMCA attributes. Carbon credit cost is
considered in addition to travel cost.

(ii) Heterogeneity in the population: value of time, value of carbon,and car-
bon credit market attributes such as unit price of carbon credit and credit
availability. This leads to dynamic equilibrium model for multi-user groups.

(iii) DUE formulation with coupled carbon-cap constraint reflecting the target
emissions reduction in the PMCA scheme.

The details of the CTM model along with the initialization, flow propagation, and
merging-diverging equations can be found in the Appendix A. The flow propagation
equations are extended from the previous work by Ukkusuri et al. (2012) and due to
space limitation we do not include them here. The notations and symbols used in this
paper are also defined in Appendix A.
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4.2 Travel Time Estimation

Travel time computation is a critical element for both DUE formulation. Most of
the previous works only compute the travel time without considering schedule delay
(Merchant and Nemhauser 1978; Ziliaskopoulos 2000). More recently, the notion of
schedule delay is accounted for in the DUE and DSO framework (Ramadurai and
Ukkusuri 2007; Han et al. 2011; Ukkusuri et al. 2012). Our proposed model requires
the computation of average travel time and we follow the methods by Ramadurai
(2009) and Han et al. (2011). Appendix B has the details of travel time estimation.

4.3 Carbon Cost for the Trip

The carbon credit cost to travel in a traffic network is inherently heterogeneous and
depends on several attributes pertaining to the vehicle, the user (driver) behavior,
traffic conditions, and atmospheric attributes such as humidity, wind speed, tem-
perature profile. Previous researchers (Barth et al. 2004; Barth and Boriboonsomsin
2008) estimated the relationship between average trip speed and CO2 emissions. The
emission on a link can be expressed as polynomials:

ψe = a0 + a1 × vp + a2 × (vp)2 + a3 × (vp)3 + a4 × (vp)4 + . . . (1)

where, aj s are the coefficients, vp is the average trip speed. ψe is the total CO2
emissions for the trip. Relationships also exist for electric vehicles. Based on the data
from Tesla Motors, the average CO2 from EVs is about 12.6 g/km. Gardner et al.
(2013) use the following equation to compute the energy requirement from EV:

ECEV = 1.79 × 10−8 × (v)4 − 4.073 × 10−6 × (v)2

+3.654 × 10−4 × (v)2 − 4(v)4 − 0.0109v + 0.2372

The steps to compute carbon cost for a path are as follows:

– Step 1: Compute the average travel time T Tp,t for the path with departure time t
– Step 2: Estimate the average speed Vp,t using the trip length lp
– Step 3: Use the appropriate emissions estimation equation based on engine type
– Step 4: Convert the emissions into carbon credit using proper factor (e.g., one

can assume 100g of CO2 = 1 carbon credit)

The path level carbon cost can be computed as follows:

CCp,t = α1v
4
p,t − α2v

3
p,t + α3v

2
p,t − α4vp,t + α5. (2)

α1, α2, α3, α4, and α5 are input parameters that depend on type of engine, geograph-
ical location, and atmospheric attributes such as wind speed, temperature profile,
etc.

vp,t : Average speed of the trip when a user departs at time t ∈ Tf on path p.

vp,t =
∑

i∈Ip
Li

T Tp,t

(3)
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Ip: set of all cell index constituting path p,
Li : Length of cell i. Next we describe the generalized cost function and its parameters
for each user class.

4.4 Generalized Cost Function Under PMCA

Consider an individual i ∈ I : {1, . . . , i, . . . , I }, with total N trips (set of trips N =
{1, . . . , n, . . . , N}). For any trip n ∈ N, an individual chooses travel option k̂ from the
set of all feasible travel options to make the trip defined as K = {1, . . . , k̂, . . . , K̂}.
Each travel option has two dimensions: path p and departure time t , and is associated
with a cost in carbon credits CC

k̂
and a travel cost T C

k̂
. The generalized cost func-

tion is specific to a user group characterized based on income level, value of travel
time, and number of trips made. Further characterization is made based on trip pur-
pose (e.g., work vs. non-work trips), congestion level, and carbon credit allocation in
the scheme. Denote, �

i,k̂
as the generalized cost of travel for an individual i choos-

ing the travel alternative (combination of departure time and path) k̂ in one of her
trip making instances. For simplicity, we present the formulation for a specific trip
purpose, congestion level, initial credit allocation and for a specific user group. The
notations that characterize the user group, congestion level, and carbon credit alloca-
tion are omitted. For any travel decision instance we observe the following attributes:
T C

k̂
: the travel time cost associated with option k̂,

CC
k̂
: the carbon cost in terms of units of credits associated with option k̂,

RBi : remaining carbon credits for individual i prior to making decision,
Hi : available money for individual i to purchase carbon credits from the market.
Incorporating these attributes, the generalized trip cost function, when travel option
k̂ is chosen, can be written as:

�
i,k̂

= βT CT C
k̂
+ βCCCC

k̂
+ βRBRBi + βH Hi (4)

With data on the travel decisions for all options k̂ ∈ K for all trips, the coefficients
βT C

m , βCC
m , βRB, βH

m can be estimated for each group m ∈ M . To collect data we
designed experiments and have estimated the coefficients using random parameter
models (please see the previous chapter). The parameters are estimated specific to
each user class and each trip type. The generalized cost GCm

p,t when departing at
time t ∈ Te on path p ∈ P w for OD pair w ∈ W by a user in group m ∈ M can be
expressed as:

GCm
p,t = βT C

m T Cm
p,t + βCC

m CCp,t + βRB
m RBm + βH

m Hm (5)

Note that, each path is unique, therefore we do not use the OD index w. Also, the
remaining carbon budget and money are only specific to the user class and indepen-
dent of the current travel option (p, t). Only travel cost is specific to a user class
m ∈ M because the value of travel time and the penalties for early and late arrival at
destination is different for each group.
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4.5 Dynamic User Equilibrium Condition

The dynamic user equilibrium (DUE) condition for PMCA-DUE specific to a user
class is defined as follows:

The generalized cost of each path between an O-D pair is equal and minimum at
any departure time interval with non-zero departure rate for the paths.

In other words, at equilibrium there is no incentive for a user belonging to a
particular class to switch path and departure time (i.e., travel option). While this def-
inition of network equilibrium is similar to dynamic equilibrium problems in the
literature (Ukkusuri et al. 2012; Szeto 2013; Ma et al. 2015), a key difference is that
the generalized cost in our case is a function of carbon credit consumption and the
accommodation of user heterogeneity in formulation.

For each user class m ∈ M and OD pair w ∈ W in the network we have the
following dynamic equilibrium condition:

0 ≤ rm
p,t ⊥ GCm

p,t − GCm∗
w ≥ 0,

⇒ 0 ≤ rm
p,t ⊥ βT C

m T Cm
p,t + βCC

m CCp,t + βRB
m RBi + βH

m Hi − GCm∗
w ≥ 0

(6)

The travel cost T Cm
p,t is computed as follows:

T Cm
p,t = αm

1 T T p,t + αm
2 ep,t + αm

3 lp,t (7)

4.6 Demand Satisfaction Constraints

At equilibrium the departure rate for all paths must accumulate to the demand for the
O-D pair.

0 ≤ GCm∗
w ⊥

∑

p∈Pw

te∑

t=0

rm
p,t − dm

w ≥ 0, ∀ w ∈ W,m ∈ M (8)

This constraint is similar to Han et al. (2011) and Ukkusuri et al. (2012) with the
addition of user class level constraint. At equilibrium we have,

∑

p∈Pw

te∑

t=0

rm
p,t − dm

w = 0, ∀ w ∈ W,m ∈ M (9)

The equations that compute ep,t and lp,t can be transformed into equivalent comple-
mentarity conditions (see Han et al. (2011)).

4.7 Dynamic User Equilibrium with Personal Mobility Carbon Allowance
(DUE-PMCA)

PMCA scheme is continuous in nature. With a choice of interval for the auction it
can continue for years. The model presented here assumes a weekly auction format.
A user only participates in the auction after a week. The price changes after each
week, however the remaining carbon credits and money continue to change as users
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make travel decisions during the week. The model divides the time horizon into mul-
tiple segments. This segmentation helps to run the model efficiently compared with
a single analysis with a very long time horizon (e.g., entire day or week). We refer to
such segment as a DUE-episode. For instance, the morning peak hour (6 am to 9 am)
is a DUE-episode. DUE-PMCA formulates the model with multiple DUE-episodes
as required by the time horizon. For instance, a typical week day can have sev-
eral DUE-episodes covering all travel activities from the 4 am to 12 midnight. Each
DUE-episode is distinct in terms of demand and purpose of the trips. For instance, a
DUE-episode for 12 noon-2 pm will have more grocery trips.

Define a finite time horizon {1, 2, . . . , π, . . . �} and a set of DUE-episodes for
the horizon {E1, E2, . . . , Eπ , . . . , E�}. Each episode Epi follows the conditions as
described by the Eqs. 6 and 8. Now we introduce a necessary constraint for the
DUE-PMCA model that reflects the carbon consumption cap for the system. PMCA
schemes are designed to meet targets such as reducing the carbon consumption by
5 % from the base case. To meet this requirement, carbon cred its equivalent to 95 %
of the base case are distributed among the users. Therefore the model needs to ensure
that the total carbon consumption for all episodes should not exceed 95 % of the base
consumption.

∑

Eπ :π∈{1,...,�}

⎧
⎨

⎩

∑

t∈Tf

∑

m∈M

∑

w∈W

∑

p∈P w

CCm
p,t ∗ rm

p,t

⎫
⎬

⎭
π

≤ � (10)

In Eq. 10, � defines the desired threshold for carbon consumption. Equation 10 is a
coupling constraint for all the DUE-episodes considered in the model. Now the entire
model can be presented as follows:

For each episode Eπ :

A1. DUE Condition:

0 ≤ rm
p,t ⊥ βT C

m T Cm
p,t + βCC

m CCp,t + βRB
m RBi + βH

m Hi − GCm∗
w ≥ 0

A2. Demand satisfaction:

0 ≤ GCm∗
w ⊥

∑

p∈Pw

te∑

t=0

rm
p,t − dm

w ≥ 0, ∀ w ∈ W,m ∈ M

A3. Travel time computation (Eq. 39)

A4. Carbon cost computation (Eq. 2)

A5. Non-negativity constraints

Coupling constraint:
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B. carbon cap:

∑

Eπ :π∈{1,...,�}

⎧
⎨

⎩

∑

t∈Tf

∑

m∈M

∑

w∈W

∑

p∈P w

CCm
p,t ∗ rm

p,t

⎫
⎬

⎭
π

≤ �

⇒
�∑

π=1

θπ ≤ �

θπ : Total carbon consumption for an episode π .

4.8 Equivalent VI

For eachDUEepisodewecanwrite the complementarity formulation in a compact format:

0 ≤ rm
p,t ⊥ GCm

p,t − GCm∗
w ≥ 0 ∀p ∈ P w, w ∈ W, t ∈ Te. (11)

The demand satisfaction and non-negativity constraints can be represented as fol-
lows:


 �

⎧
⎨

⎩

∑

p∈Pw

te∑

t=0

rm
p,t − dm

w = 0, r ≥ 0 ∀ w ∈ W,m ∈ M

⎫
⎬

⎭
(12)

Now define the θ as the total carbon consumption for the episode and it should be
non-negative. The equivalent VI formulation for a single DUE-episode will be:

GCT (r − r∗) ≥ 0, r∗ ∈ 
 (13)

0T (θ − θ∗) ≥ 0, θ∗ ∈ R+ (14)

Now for a PMCA-DUE problem with � DUE-episodes we can have:

GC1
T (r1 − r1∗) ≥ 0, r1∗ ∈ 
1,

0T (θ1 − θ1
∗) ≥ 0, θ1

∗ ∈ R+,

· · · · · · · · ·
GCπ

T (rπ − rπ
∗) ≥ 0, rπ

∗ ∈ 
π,

0T (θπ − θ∗
π ) ≥ 0, θπ

∗ ∈ R+,

· · · · · · · · ·
GC�

T (r� − r�
∗) ≥ 0, r�

∗ ∈ 
�,

0T (θ� − θ�
∗) ≥ 0, θ�

∗ ∈ R+,

�∑

π=1

θπ ≤ �.

Now we denote,


θ �
{

�∑

π=1

θπ ≤ �

}

(15)

Also define, Y = [r1, θ1, r2, θ2, . . . , rπ , θπ , . . . , r�, θ�]T ;
C = [GC1, 0,GC2, 0, . . . ,GCπ , 0, . . . ,GC�, 0]T and
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 : {
′
1 × 


′
2 × · · · × . . . 


′
π × · · · × 


′
� × 
θ }. Now the system of VIs can be

represented in a compact format.

CT (Y − Y∗) ≥ 0, Y∗ ∈ 
 (16)

The solution of the V I (C, 
) will be the solution of formulation AB

5 Solution Approach

This section describes the solution approaches to solve the DUE-PMCA problem. In
the previous section, we have shown that the original problem can be transformed
into a variational inequality (VI) problem. This section proposes solution methods for
the equivalent VI problem. Challenges associated with the solution technique mostly
arise with the nature of the cost function that is non-differentiable, non-convex, and
non-monotone. The reason is that we obtain the cost function from the CTM simula-
tion. Commonly used commercial solvers such as KNITRO and PATH are not able to
solve this problem for reasonable sized networks. Addressing this issue, this research
approaches with derivative-free algorithms, namely the projection algorithm, to solve
the equivalent VI problem.

We propose two approaches to solve the problem. The first approach is to use
the basic projection algorithm to solve the VI problem with coupling constraints of
carbon cap. The second approach is to decompose the original VI problem and solve
a series of smaller VI problems where the carbon cap constraints are associated with
each individual DUE-episode.

5.1 Basic Projection Method for the Coupled VI

To solve a V I (F, K) we compute a sequence of points {ui}∞i=1 starting with an initial
solution x0.

ui+1 = �K [ui − F(ui)], ∀i = 1, 2, . . . , ∞ (17)

�K(u) denotes the the projection of u on the feasible region K . In other words, one
defines the projection:

� = argmin ‖z − u‖2 (18)

The convergence of the solution requires that F should be monotone. In our case, the
cost function does not have this property and direct convergence cannot be shown.
However the feasible region that has only systems of linear equations and inequalities
is compact. With this compact feasible region it is possible to show sub sequential
convergence when the VI problem is solved using projection method. Ukkusuri et al.
(2012) has the proof for the case without carbon cap constraint. Since carbon cap
constraints are linear in nature and the properties of the feasible region remain the
same, the same proof applies for our case.
Algorithm steps:
Data: Initialize with a feasible Y0 ∈ 


Step 0: Set i = 0.
Step 1: Computation: CT M(Y),C,Y
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Step 2: Find the projection: Z∗ = argminz∈
[Z − (Yi − λC(Yi))].
Step 3: If ‖Z∗ − Yi‖ < ξ , Terminate. Else, Yi+1 = Z∗ and Go to Step 1.

Our experience with the basic projection algorithm shows that the algorithm is not
efficient to solve large networks and do not meet the error tolerance criterion at most
cases. To resolve the issue we propose a decomposed approach where each DUE-
episode is solved separately with its distinct carbon cap constraint. The next sections
describes the algorithm.

5.2 Algorithm to Solve Decomposed VI

Instead of a coupling constraint for all the DUE-episodes in an analysis we can
distribute the carbon caps among the DUE-episodes. This implies that each DUE-
episode can be solved separately with its own carbon cap constraints. Further, we
assign the carbon caps specific to each user class and each OD pair. A useful prop-
erty of our problem is that its feasible region 
 can be expressed as a Cartesian
product of a set of closed and convex linear constraints: demand satisfactory and car-
bon cap conditions. This naturally leads to a decomposition optimization scheme to
solve this problem. The algorithm proposed by Zhan and Ukkusuri (2014) decom-
poses the original VI problem coupled variation inequalities of lower dimensions,
with each defined for a user group and origin-destination pair. The algorithm ensures
the mapping finds a convergent sequence and it can be proved that such a fixed point
is a solution for sub-VI problem. If we find a set of solutions for all sub-VI prob-
lems simultaneously, it can be shown that the combined solution is a solution of the
original VI problem.

Algorithm steps (Zhan and Ukkusuri 2014):
Step 0: Set counter k=0. Initialize a feasible departure rate.
Step 1: Run the simulation CT M(γ k) and compute T C(γ k), CC(γ k), GC(γ k).
Step 2: Decompose γ k = (γ k

1 , γ k
2 , ..., γ k

m)T .
Step 3: Find the λk(γ k) that ensures most number of user classes and OD pairs sat-
isfy: ||Ti(γ

k
i ) − Ti(γ

k−1
i )|| ≤ α||γ k

i − γ k−1
i )||, in which Ti(γ

k
i ) = Pr
i

[γ k
i −

λk(γ k)GCi(γ
k)]

Step 4: Update departure rate γ k
i using mapping Ti only for those user classes and OD

pairs that satisfy the condition in Step 3. For others that not satisfied, set γ k
j = γ k−1

j .
Step 5: If none of the user classes and OD pairs are found satisfy condition in Step 3,
set γ k

j = γ k−1
j , λk(γ k) = λk−1(γ k−1)/2.

Step 6: If ||z∗ − γ k|| ≤ ε, terminate the algorithm, γ ∗ = z∗. Otherwise γ k+1 = γ k ,
Set k = k + 1, go to step 1.

6 Numerical Example

We solved the PMCA-DUE model with two test networks.

(a) X-shape network (similar to that used in Ukkusuri et al. (2012)) with four O-D
pairs and three user classes. The network has ten cells and the equilibrium is
based on departure time choice only.
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(b) Sioux-Falls network with six O-D pairs and five user classes. The network has
114 cells and 142 links. There are two O-D pairs with three paths, two O-D
pairs with two paths, and two O-D pairs with a single path.

Each link in the network is divided into multiple cells. The time step for the sim-
ulation is set such that no vehicle can move more than one cell in a single time step.
We choose the time step as 60 seconds. With free flow speed 30 miles/hour, the max-
imum length of a cell is 0.5 miles or 0.8 kilometers. Assuming saturation flow as
1800 vehicles per hour per lane the maximum flow rate for a cell is 30 vehicles per
time step per lane. At saturated condition the bumper-to-bumper distance is about 10
meter. Therefore, the jam density is (0.8*1000)/10 or 80 for the cells in the network.
Other than source and sink cells we use these parameters for all cells in the network.
The ratio to forward to backward shockwave propagation is 0.8 in the analysis. The
convergence criterion is the norm of difference between two consecutive solutions.
All results in this research are obtained by setting the convergence criterion as 0.05.
The optimal value of parameter step size in projection algorithm that produces the
best results is different for different problems. We observe that the value is less than
1 in all cases and ranges between 0.1 and 0.625 in our tests.

6.1 Input Parameters

To quantify the carbon cost we extracted a relationship between average path speed
and GHG emissions rate (g of CO2 per mile) using the county level database from
EPA-MOVES. We tested our algorithm on Sioux-Falls network which is closer in
terms of traffic and atmospheric conditions of Minnehaha county of South Dakota
in the U.S. EPA-MOVES provides access to county level data that include fuel type
and formulation, vehicle age distribution, temperature profile, humidity, and fuel
type distribution. With link geometry attributes identical to the Sioux-Falls network,
we estimate GHG emissions for different speed levels. A fourth-order polynomial
fits the data points and represents the relationship between average path (trip) speed
and GHG emissions. The fitted relationship is similar to the empirical relationship
obtained in the study by Barth and Boriboonsomsin (2008). Gardner et al. (2013) fol-
lowed similar approaches to extract functional relationship from EPA-MOVES. The
fitted function is as follows:

ψe = 0.0002v4 − 0.0417v3 + 2.8745v2 − 87.317v + 1323.5. (19)

Here, ψe = Emissions rate g/mile and v = Average speed in miles/hour. We used
this equation for both X-shape and the Sioux-Falls network (Fig. 3).

6.1.1 Trip Demand and Value of Time

We consider three income classes with three types of trips for our tests. Number of
trips for user groups representing different income levels are obtained from the 2009
National Household Travel Survey data and are listed in Table 1. To account for the
heterogeneity in travel cost for each income class we use the value of travel time
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Fig. 3 Fitted relationship between speed and emissions rate for Minnehaha County, SD using EPA-
MOVES data

(VOTT) for trips specific to purpose. The VOTT values are obtained from the guide-
lines provided by FHWA (US DOT R 2011). For the ease of conducting experiments,
the number of total trips are proportioned with the same relative difference among
the groups.

6.1.2 Parameters for Cost Function

Table 2 shows the parameters used for cost function. The parameters correspond to:
travel cost, carbon cost, effect of remaining carbon credits relative to initial allocation
at the point of decision making, and available money to spend in the carbon market

Table 1 User group definition

User Income Work VOTT Grocery VOTT Rec. VOTT

Group Range Trips Work Trips Shopping Trips Rec.

Group-1 $20,000 - $39,999 4 7.2 7 5.8 3 6.1

Group-2 $40,000 - $59,999 6 12.0 8 9.6 4 10.2

Group-3 $60,000 - $99,999 7 18.0 10 14.4 5 15.3
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Table 2 Parameters for
generalized cost function (Aziz
et al. 2015)

User βT C βCC βRB βHH

Class-1 0.031 0.056 −0.42 −0.048

Class-2 0.0066 0.113 3.72 1.163

Class-3 0.011 0.057 2.75 −1.63

Class-4 0.024 0.46 5.23 1.04

Class-5 0.03 0.109 1.52 −1.72

relative to initial money. The details of the estimation procedure can be found in Aziz
et al. (2015).

6.2 X-Network

The X-shape network, originally used in Ukkusuri et al. (2012), is a small network
with diverge and merge cells (Fig. 4). It allows to test the equilibrium with departure
time choice. We define a scenario with three DUE episodes characterized by dis-
tinct trip demand for each user class. The carbon cap constraint requires a threshold
value for the PMCA-DUE problem as a whole (i.e., coupled with all DUE-episodes).
First, we solve three DUE problems without carbon cap constraints separately and
compute the carbon consumption. Then we set a 2 % reduction goal for the PMCA-
DUE and define the constraint such that the total carbon consumption for all three
DUE-episodes cannot exceed 98 % of the base case. We solve the network following
both approaches described earlier in Sections 5.1 and 5.2. Results from two solution
approaches are compared to verify whether significant difference exists between the
solution approaches.

The Figs. 5, 6 and 7 show the results obtained from basic projection Algorithm 5.1.
The departure rate vs. generalized cost plots show that the highest departure rate
occurs at the lowest cost. This trend is valid for all user classes and O-D pairs.
Next, the Figs. 8, 9 and 10 show the results obtained from decomposed VI projec-
tion Algorithm 5.2. No significant differences are found in the cost vs. departure rate
plots compared with those obtained from the basic projection algorithm with coupled
constraints.

Table 3 summarizes the results. The base case represents the problem without any
carbon cap, basic refers to the solution obtained by basic projection algorithm and
coupled carbon cap constraint, and decomposed refers to the solution obtained by
the decomposed VI algorithm with individual carbon cap constraints. At system level
we see the total carbon consumption reduced to near 2 % for all DUE-episodes. In
other words, the constraint is not active. It is interesting to see that the travel cost
is lower with carbon cap constraint for DUE-1 when compared with the base case.
Due to the inclusion of carbon credit cost into the generalized cost, the path flows
are redistributed and this may cause a lower total cost compared with the base case.
These findings are same for both basic and decomposed algorithms. However for
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Fig. 4 Cell representation of
X-Shaped Network (Ukkusuri
et al. 2012)

DUE-2 and DUE-3, the travel time costs increase when the carbon cap constraints
are introduced. As mentioned earlier, path flow redistribution is one of the possible
causes that affects the resulting travel times. In addition, demand levels specific to
user classes also affect the travel costs.

Table 4 reports the cumulative carbon cost difference at O-D level for each user
class using the results obtained from basic and decomposed algorithms. In the tables,
each row represents a user class and each column represents an O-D pair. Each cell
value indicates the difference between the solution obtained from basic projection
and decomposed algorithm. The purpose of the comparison is to show that the results
obtained from decomposed algorithm that solves a relaxed version of the problem
(i.e., no coupled constraint rather carbon caps at individual level)are not significantly
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Fig. 5 Results for DUE-1: Coupled constraint problem
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Fig. 6 Results for DUE-2: Coupled constraint problem
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Fig. 7 Results for DUE-3: Coupled constraint problem
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Fig. 8 Results for DUE-1: carbon constraint at OD level



H. M. Abdul Aziz et al.

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:1 OD:1−8 Path:1

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:1 OD:1−10 Path:2

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:1 OD:4−8 Path:3

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:1 OD:4−10 Path:4

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
1.2

1.3

1.4

1.5

1.6

G
en

er
al

iz
ed

 c
os

t

User Group:2 OD:1−8 Path:1

0 10 20 30 40
0

0.5

1

1.5

2

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
1.2

1.3

1.4

1.5

1.6

G
en

er
al

iz
ed

 c
os

t

User Group:2 OD:1−10 Path:2

0 10 20 30 40
0

0.5

1

1.5

2

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
1.2

1.3

1.4

1.5

1.6

G
en

er
al

iz
ed

 c
os

t

User Group:2 OD:4−8 Path:3

0 10 20 30 40
0

0.5

1

1.5

2

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
1.4

1.45

1.5

1.55

1.6

G
en

er
al

iz
ed

 c
os

t

User Group:2 OD:4−10 Path:4

0 10 20 30 40
0

0.5

1

1.5

2

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:3 OD:1−8 Path:1

0 10 20 30 40
0

1

2

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:3 OD:1−10 Path:2

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:3 OD:4−8 Path:3

0 10 20 30 40
0

2

4

D
ep

ar
tu

re
 ra

te

0 10 20 30 40
0.5

1

1.5

G
en

er
al

iz
ed

 c
os

t

User Group:3 OD:4−10 Path:4

0 10 20 30 40
0

1

2

D
ep

ar
tu

re
 ra

te

Fig. 9 Results for DUE-2: carbon constraint at OD level

different from the solutions from basic projection algorithm. From the tables we
observe that:

(a) The decomposed algorithm underestimates the carbon consumption at OD level.
This is valid for all three episodes and all user classes. However the extent of
underestimation is negligible.

(b) The highest difference we obtain is 0.114 %. Most cases the difference is below
0.05 % that is negligible.

(c) For user class-1 the differences are high (≤ 0.114 %) for DUE-episodes.

With evidences from the cost vs. departure rate plots, the total time and
cost values, and the carbon cost difference values at group levels, we conclude
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Fig. 10 Results for DUE-3: carbon constraint at OD level
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Table 3 System level results for X-network with coupled and decomposed approaches (2 % carbon
reduction constraint from base)

Carbon cost Travel cost

Episode Base Basic Decomposed Base Basic Decomposed

DUE-1 393600 386000 385810 2972 2711 2788

DUE-2 370200 361900 361747 2431 2686 2740

DUE-3 394500 385900 385723 2887 2944 2955

that the results obtained from decomposed algorithm are not significantly dif-
ferent from the basic projection algorithm. This is important because the basic
projection algorithm does not solve the reasonably sized networks efficiently
whereas the decomposed algorithm can solve those networks at desired error
tolerance.

Figure 11 shows the convergence for the DUE-1, DUE-2, and DUE-3 for the
X-network and we can see stable convergence is achieved for each case. The
next section describes the results from Sioux-Falls network obtained through the
decomposed VI algorithm.

Table 4 Comparison between two solution approaches: basic vs. decomposed algorithm

User Carbon cost Difference(%) From basic projection algorithm

OD-1 OD-2 OD-3 OD-4

DUE-1

Class-1 −0.114 −0.115 −0.105 −0.098

Class-2 −0.038 −0.009 −0.005 −0.031

Class-3 −0.041 −0.0632 −0.058 −0.028

DUE-2

Class-1 −0.084 −0.086 −0.078 −0.072

Class-2 −0.025 −0.004 −0.0005 −0.019

Class-3 −0.019 −0.037 −0.034 −0.01

DUE-3

Class-1 −0.108 −0.112 −0.103 −0.093

Class-2 −0.034 −0.043 −0.005 −0.026

Class-3 −0.034 −0.055 −0.049 −0.022
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Fig. 11 Convergence for X-network

7 Results for Sioux-Falls Network

This section reports the results for Sioux-Falls network. The six O-D pairs are: 540-
550, 551-541, 540-570, 551-570, 571-541, and 571-550. For each O-D pair and each
user class we define the trip demands to characterize the DUE-episodes. A three-
episode PMCA-DUE is analyzed using the decomposed VI algorithm. Five user
classes are defined: (a) Low income and work trip, (b) Medium income and work
trip, (c) Medium income and grocery trip, (d) High income and work trip, and (e)
High income and grocery trip. The value of travel time is used as a measure of the
income level. The relative value of carbon cost is capture through the generalized cost
function parameters. These parameters are estimated using the data obtained from
experimental games (Aziz 2014).

The decomposed VI algorithm solves each DUE-episode separately. For brevity,
we report the results for DUE-1 (Fig. 17) episode here and the results for DUE-2
(Fig. 18) and DUE-3 (Fig. 19) can be found in the Appendix C. We test the PMCA-
DUE model for 2 %, 5 %, and 7 % carbon reduction from the base case where no
carbon cap is introduced. First we report the cost vs. departure time plots for DUE-1
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Fig. 12 Cell representation of SiouxFalls network (Ukkusuri et al. 2012)

at 2 %, 5 %, and 7 % reduction to examine the equilibrium conditions. Then we
compare the O-D level carbon and travel time costs for each user class for each
reduction level. The base case for DUE-1 can be found in the Appendix C (Fig. 12).

7.1 Measuring Convergence

A well-recognized convergence metric is Relative Gap. Relative Gap compares cur-
rent assignment solution to the ideal shortest-path cost for all O-D pairs and departure
intervals. We followed the recommendations in FHWA guide on dynamics traffic
assignment (Sloboden et al. 2012) and the DTA Primer (DTA 2011). The relative gap
can be computed as follows:

Relative Gap =
∑

t∈Tf

∑
m∈M

∑
w∈W

∑
p∈P w(GCm

p,t ∗ rm
p,t ) − ∑

t∈Tf

∑
m∈M

∑
w∈W(dm

w,t ∗ Um
w,t )

∑
t∈Tf

∑
m∈M

∑
w∈W(dm

w,t ∗ Um
w,t )

dm
w,t = Demand for OD pair w for class m at departure timet

Um
w,t = Shortest generalized cost for OD pair w for class m at departure time t
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Table 5 Relative gap values at
OD and system level for DUE-1 Level DUE-1-98 DUE-1-95 DUE-1-93

OD-1 0.002 0.008 0.002

OD-2 0.0000004 0.0000002 0.0000003

OD-3 0.009 0.005 0.0012

OD-5 0.007 0.003 0.0014

System 0.0042 0.0048 0.001

Tables 5 and 6 show the relative gaps for DUE-1, DUE-2, and DUE-3 episodes.
The values are reasonably small.

7.2 PMCA-DUE-1 with 2 %, 5 %, and 7 % carbon reduction

The total carbon cap is set at 98 %, 95 %, 93 % level of the base case for each case
respectively. Further, the cap is distributed at O-D level for each group. We cannot
distribute the carbon cap uniformly because each user class has a unique general-
ized cost as a parametric combination of carbon cost and travel cost. Therefore, we
compute the carbon consumption of each user class for each O-D pair in the base
case and set the carbon caps accordingly. Figure 13 reports the generalized cost vs.
departure rate plots for the PMCA-DUE-1 with 2 % reduction level. The plots show
consistency in terms of the feature that higher departure rate occurs at lower cost
reflecting DUE conditions. For few cases we observe multiple peaks in the depar-
ture rate vector. Most of those cases are accompanied with multiple troughs in the
cost vector. Whenever the cost falls, the departure rate goes up. For user class-4 and
class-5, this is more prominent. Similar trends can be found for the DUE-episodes
with 5 % and 7 % reductions. For PMCA-DUE-1 at 7 % reduction, we see multiple
peaks in the departure rate vector more often. Since the carbon constraint becomes
tight it may happen that the rate vector is distributed over multiple peaks to satisfy
equilibrium.

Table 6 Relative gap values at OD and system level for DUE-2 and DUE-3

Level DUE-2-98 DUE-2-95 DUE-3-98 DUE-3-95

OD-1 0.002658 0.00323 0.000338 0.004916

OD-2 0.002151 0.005906 0.00002515 0.00588934

OD-3 0.0007335 0.002988 0.0053304 0.004992

OD-5 0.0033899 0.021703 0.00002363 0.01502255

System 0.0023 0.009 0.000955 0.006347
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Fig. 13 PMCA-DUE-1 results: 2 % reduction from base case

7.3 Comparison of OD Level Carbon and Travel Cost at Different Levels
of Carbon Reduction

This section compares the total carbon and travel cost at O-D level when PMCA is
implemented at different reduction level. The goal here is to explore the effect of
PMCA on total carbon consumption and system-wide travel costs. Note that travel
cost is not same as generalized cost. Travel cost is defined as the total cost accounting
for travel time and penalties for early and late arrivals. The travel cost comparison
shows the impact of PMCA when personal carbon allowance is introduced in the
system. We only compare the results for OD-1, OD-2, OD-3, and OD-5. Since OD-
4 and OD-6 do not have any path choices, the results are not reported here. Table 7
summarizes the results at O-D level. Carbon consumption at O-D level goes down as
carbon cap constraints are introduced. This is valid for all O-D pairs and all reduction
levels. The increase in travel cost is much higher as the carbon cap goes from 5 %
to 7 %. This trend holds true for all O-D pairs. This indicates a non-linear pattern of
travel cost increase as PMCA imposes carbon constraint.

For OD-2, the travel cost first decreases with 2 % reduction. However, the travel
cost increases as the reduction level rises. This can be explained by the effect of
path flow redistribution and the conflicting nature of travel and carbon cost. With a
smaller carbon cap, the PMCA-DUE model redistributes the flow to equilibrate the
generalized cost that include both carbon and travel time cost. It is possible that this



H. M. Abdul Aziz et al.

Table 7 OD level cost comparison at different levels of carbon caps

Carbon Cost Travel Cost

Reduction level Reduction level

Case: Base 2 % 5 % 7 % Base 2 % 5 % 7 %

OD-1 56000 53261 53378 52600 3407 3424 3496 3739

OD-2 58651 53272 53268 52575 2671 2646 2687 2848

OD-3 51692 49737 49113 48980 4116 4119 4230 4978

OD-5 45756 43636 42807 42730 2534 2514 2576 2658

results into a better flow distribution in terms of O-D level cost. However, with a
higher cap, the model redistributes the flow so that carbon cap constraint is satisfied
resulting into a higher travel cost compared with the base case. OD-5 exhibits the
same feature (Figs. 14 and 15).

7.4 Comparison of Carbon Consumption for User Classes

Five user classes are defined with three attribute: (a) income level (value of travel
time), (b) how many trips to make each week?, (c) purpose of the trip. The classes
are: 1. Low income, fewer weekly trips and work trip, 2. Medium income, moderate
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Fig. 14 PMCA-DUE-1 results: 5 % reduction from base case
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weekly trips, and work trip, 3. Medium income, moderate weekly trips, and grocery
trip, 4. High income, high weekly trips, and work trip, 5. High income, high weekly
trips, and grocery trip. The DUE-1 episode is the morning peak hour with work trips
and grocery trips specific to OD pairs. Table 8 shows the total carbon consumptions
for each user class. The results are categorized by OD pair and level of carbon reduc-
tion to demonstrate the effects of PMCA. The table reports % change only when the
consumption is significantly large.

The decrease in carbon consumption for class-4 is much smaller compared with
class-5 as seen in the results for OD-1 and OD-3. Class-4 and class-5 are differenti-
ated by only trip purpose. For work trips the reduction level is smaller. The largest
decrease is 1.82 % as observed for OD-3. On the other hand, the decrease for gro-
cery trips ranges between 6-7.4 %. This is intuitive because class-5 users have a high
value of travel time for work trips compared with grocery trips. It is more likely that
the users would be saving carbon credits more in the grocery trips.

The carbon consumption for class-2 gets smaller significantly (ranging from 7-
11 %) as carbon caps are introduced. However, the relative changes from 2 % to 5 %
and 7 % reductions are smaller. It is interesting to see that the reduction in carbon
for grocery trips by class-3 (medium income) users is smaller compared with class-
5 (high income). Higher income (class-4 and class-5) users are characterized with
higher trips compared to medium income (class-2 and class-3). It is more likely that
higher income users (class-5) would be more sensitive to carbon saving in grocery
trips compared with medium income users (class-2).
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Fig. 15 PMCA-DUE-1 results: 7 % reduction from base case
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For class-1 users the carbon consumption decreases with higher carbon caps with
the exception in OD-1. This can be explained by flow distribution mechanism at
equilibrium. The value of time is low for class-1 users compared with other users.
Equilibrium condition at the base case will push more flows from user class-1 to a
relative higher travel time option (rate vector) resulting into lower carbon. With the
carbon caps, the equilibrium state considers both carbon and travel costs. Accord-
ingly, it is possible that flows from other user class are pushed to low-carbon (higher
travel cost) option. This may cause higher carbon cost for the travel option compared
to the base and the carbon consumption goes up for all classes using the travel option
(specifically the users from class-1).

7.5 Comparison of Path Level Carbon Cost (Emissions)

This section explores the changes in carbon cost specific to paths. The cumulative
carbon cost is a parametric measure of the emissions level of the particular path con-
tributed by a particular user class. We define 100 g of CO2 equivalent to one carbon
credit and the cost can be directly converted into emissions. One particular interest
is to observe the change in the level of emissions at path levels. It is possible that the

Table 8 Comparison of carbon consumptions for different user classes (values in the parentheses show
the difference in % from base)

OD-Pair Total Carbon Cost

Class-1 Class-2 Class-3 Class-4 Class-5

OD-1(Base) 18082 14620 363 22567 363

OD-1-98 16379 (9.4 %) 13038 (10.8 %) 368 22454 (0.5 %) 362

OD-1-95 16802 (7.07 %) 13053 (10.72 %) 361 22400 (0.73 %) 361

OD-1-93 17160 (5.1 %) 12964 (11.3 %) 373 22409 (0.69 %) 357

OD-2(Base) 23444 24906 348 9605 348

OD-2-98 20357 (13 %) 22622 (9.17 %) 350 9600 343

OD-2-95 19987 (15 %) 22905 (8.03 %) 359 9675 343

OD-2-93 19487 (17 %) 22674 (8.96 %) 352 9718 344

OD-3(Base) 414 415 17033 13127 20704

OD-3-98 387 365 16604 (2.51 %) 13009 (0.89 %) 19371 (6.4 %)

OD-3-95 375 368 16303 (4.28 %) 12889 (1.82 %) 19178 (7.3 %)

OD-3-93 369 368 16213 (4.81 %) 12865 (2 %) 19167 (7.4 %)

OD-5(Base) 11069 14109 19871 353 353

OD-5-98 10232 (7.55 %) 13071(7.35 %) 19637 (1.18 %) 352 344

OD-5-95 9868 (10.85 %) 12903 (8.55 %) 19340 (2.67 %) 352 344

OD-5-93 9736 (12.04 %) 12965(8.11 %) 19438 (2.18 %) 349 343
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emissions level of a path significantly increases or decreases due to distribution of
flows as PMCA-DUE satisfies equilibrium. Figure 16 shows the changes in carbon
consumption(i.e., cumulative carbon cost) at path level for all O-D pairs.

For OD-1 (Fig. 16 top-right) the carbon consumption for path-3 decreases as we
set the carbon consumptions caps. At the same time, the carbon consumptions go
up for path-1 and path-2. This trend continues up to 5 % of reduction and at 7 %
reduction path-3 exhibits similar carbon consumption as that of 5 %. However, the
consumption is higher for path-1 and lower for path-2 when compared with 5 %
reduction level results.

For OD-2 (Fig. 16 bottom-right), flows are distributed between two paths. Lower
carbon consumption can be observed when carbon cap constraints are introduced.
The carbon consumptions do not vary much at different levels of carbon cap. For
OD-3 (Fig. 16, bottom-left) The total carbon consumptions increase for path-1
and path-2, whereas path-3 shows lower carbon consumption. The pattern changes
for the case with 7 % reduction. The carbon consumption goes up for path-3
while going down for path-2 and path-3. OD-5 (also with two paths) shows a
different pattern compared with OD-2 (Fig. 16, top-left). The carbon consump-
tion is higher for path-2 at 2 % and 5 % reduction level and is lower for 7 %
reduction level.

Fig. 16 Path level carbon cost at different carbon caps
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8 Concluding Remarks

The PMCA-DUE model is one of the first dynamic user equilibrium models
incorporating the travel behavior under carbon allowance scheme. The comple-
mentarity based formulation provides a novel way to describe equilibrium under
PMCA scheme. Consideration of carbon cost in addition to travel cost for path
and departure time choice requires a new generalized cost function and equilibrium
condition. Addressing this, we have developed a multi-user dynamic equilibrium
model where each user class has a distinct value of travel time, trip demand, dif-
ferent sensitivity to perceived carbon cost (see Section 4.4). Also, the effects of
initial allocation of carbon credits, value of travel time, and number of trips are
considered in the generalized cost function. This research makes several contribu-
tions to the literature. First, a multi-class network equilibrium model is formulated.
Both complementarity and equivalent VI formulation are demonstrated. Second,
we propose two solutions techniques: basic projection and decomposed VI algo-
rithms. We solve two test networks and analyze the results. Third, the user and
OD level travel and carbon costs are investigated. Carbon consumption patterns are
explored. Finally, the impact PMCA scheme is investigated which provides insights
for carbon allowance schemes in general. The key findings from the analyses are
as follows:

(a) Introducing carbon cap through PMCA schemes can lower the system level
travel time up to certain level of cap. Our results (Tables 3 and 8) show that the
cumulative travel costs are lower from the base case when PMCA scheme is
in effect. This can be explained from the concept of congestion pricing and the
conflicting nature of travel time minimization and carbon credit consumption.
When the average trip speed is high, the carbon cost goes up. At the same time,
the travel cost goes down. Since the generalized cost in our model considers
both, the model distributes the flows such a way that the generalized cost, which
is a parametric combination of the carbon and travel cost, is minimized. At
equilibrium it redistributes the flow by adjusting the departure rate vector. This
results into a new equilibrium state with lower cumulative travel cost for a class.
This does not necessarily decrease the travel cost for each path. Rather for some
paths the costs increase and for some paths the cost decrease as exhibited by the
Fig. 16. As a net effect, it is possible to have lower travel cost for the system at
OD level.

(b) Class-4 users (characterized by high value of travel time) are less sensitive to
carbon constraint in the context of work trips. Relatively higher value of time
and higher penalties for late and early arrival may cause to exhibit this. For work
trips class-4 users do not show significant reduction of carbon consumption as
the carbon cap goes from 2 % to 7 %.

(c) One important finding from our results is that the emissions level (parametric
function of the carbon consumption) for paths changes with the levels of reduc-
tion. For air quality conformity this is important because PMCA leads reduction
in carbon consumption for the network, however for some paths the emissions
can be higher as seen in Fig. 16.
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(d) Carbon consumptions are lower for cases (OD-3) characterized by grocery
trips compared with cases (OD-1) characterized by work trips. This is mainly
because of the nature the parameters in the generalized cost function. The
parameters specific to grocery trips prioritize the savings of carbon credits so
that it can be used for work trips later.

(e) Our analysis indicates that the equilibrium state highly depends on the compo-
sition of trips characterized by purpose. A case with higher grocery trips will
reach a different equilibrium compared with a case with higher work trips. This
is because of the heterogeneity captured through the generalized cost function
parameters.

(f) The results also show the impact of setting initial distribution of carbon credits.
The initial distribution is incorporated through the carbon cap constraint in the
model. As we move from 5 % to 7 % reduction, the equilibrium state changes
and we observe a new path cost pattern (see Fig. 16) and the OD level carbon
consumptions are also affected (see Tables 3 and 8).

8.1 Implementation Challenges

The real world implementation of the PMCA scheme asks for building the infras-
tructure for PMCA system. This includes automating the transactions and regulating
the distribution of the credits so that the system sustains. Further, one needs to assess
the economic feasibility of the PMCA installation at different jurisdictional levels.
Another major challenge will be the public acceptance at the initiation of the scheme.
The authority needs to promote the scheme with clarity such that the system users
of all classes can readily see the benefits. With emergent paradigm of connected
automated vehicles, we expect that the PMCA execution can leverage the com-
munication among the vehicles and infrastructures in terms of transaction, system
regulation, and maintaining carbon market stability.

8.2 Limitations and Future Directions

This research has few limitations in terms of scope and transferability. First, the
parameters for the generalized cost function are estimated specifically for the Sioux-
Falls network. Although the models are applicable to other networks, one must
estimate parameters specific to the transportation network. Second, the captured het-
erogeneity across population can be extended to more generally by considering other
trip types, finer level of income, and vehicle composition.

Finally, our solution technique solves only up to 7 % reduction for the Sioux-Falls
network. It is possible that the problem becomes infeasible with higher carbon cap.
We observe that the problem can be solved with lower trip demand keeping the carbon
cap same indicating the allocated carbon for the system may not be sufficient for the
original demand. The demand feasibility issue can be resolved through redistribution
of the carbon credits based on the demands for specific groups at specific OD pairs.
This alludes to another research question regarding the initial allocation of carbon
credits with efficiency and equity. This is a potential future research direction that is
critical for the implementation of the PMCA schemes.
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Appendix A: Appendix Cell transmission model

The CTM divides each link of the network into finite number of homogeneous cells.
Each cell has a length at least equal to the distance traveled in a single time interval
at free flow speed. Also, the time horizon is finite and discretized into a number of
intervals.

(a) Notations and symbols:
Indices:
w: index of origin-destination pairs, w ∈ W : {1, . . . , W };
p: index of paths, p ∈ P : {1, . . . , P };
i, j , k: index of cells;
t : index of discrete time intervals,
m: index of user group, m ∈ M : {1, . . . , M}.

Parameters:
αm
1 : unit cost of travel time for user class m;

αm
2 : unit cost of early arrival for user class m;

αm
3 : unit cost of late arrival for user class m;

where αm
2 < αm

1 < αm
3 ;

t∗w: preferred arrival time for O-D pair w (this is same for all user classes);
βm

T : Estimated parameter for travel time cost in the generalized cost function
for class m;

βm
C : Estimated parameter for carbon cost in the generalized cost function for

class m;
βm

R : Estimated parameter for the effect of remaining carbon budget for class
m;

βm
H : Estimated parameter for the effect of available money to spend in the

carbon market for class m;
dw,m: total demand from O-D pair w for class m;
ς : infinitesimal flow to avoid zero denominator;
te: maximum departure time (loading time);
tf : maximum time horizon (network clearance time);
Ni : jam density of cell i;
Qi : flow capacity out of cell i;
δ: ratio of backward to forward shockwave propagation.
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Sets:
C: set of cells;
CO : set of ordinary cells;
CR: set of source cells;
CS : set of sink cells;
CD: set of diverging cells;
CM : set of merging cells;

E: set of links or cell-connectors;
EO : set of ordinary links;
ED: set of diverging links;
EM : set of merging links;
�−1

i : set of predecessors of cell i;
�i : set of successors of cell i;
M: set of all user classes;
W : set of all O-D pairs;
P w: set of paths for O-D pair w;
P : set of all the paths, P = ∪w∈WP w,
Te: set of all departure time intervals, T � {0, · · · , te}
Tf : set of all time intervals, Tf � {0, · · · , tf }.

Variables:
x

i,m
p,t : cell occupancy of cell i at time t for the flow on path p 
 i for user

class m,
y

i,j,m
p,t : flow from cell i to cell j at time t for the flow on path p 
 (i, j) for

user class m,

x̄i
t : aggregate cell occupancy of cell i at time t , i.e., x̄i

t =∑

∀p
i

, m ∈ Mx
i,m
p,t , ∀ i ∈ C; t ∈ Tf ,

ȳ
i,j,m
t : aggregate flow from cell i to j at time t , i.e., ȳi,j

t =∑

∀p∈P

, my
i,j,m
p,t , ∀ (i, j) ∈ E; t ∈ Tf ,

x̃
i,j
t : aggregate cell occupancy at diverging cell i at time t proceeding to

cell j ,
rm
p,t : departure rate at time t for the flow using path p for user class m,

T Tp,t : travel time for the flow using path p at time t ,
τp,t,t ′ : auxiliary variable for maximum travel time estimation,
τ̂p,t,t ′ : auxiliary variable for maximum travel time estimation:

τ̂p,t,t ′ = 1 − τp,t,t ′ ,
θp,t,t ′ : auxiliary variable for maximum travel time estimation,
νp,t,t ′ : auxiliary variable for average travel time estimation.
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An ordered pair of cells (i, j) represents a link and an ordered collection of
links or an ordered collection of cells represents a path (similar to (Ukkusuri et al.
2012)). Also, a cell i ∈ p implies that path p must contain cell i and a link
(i, j) ∈ p implies that path p must go through link (i, j).

(b) Initialization:
At the beginning of the simulation (t = 0), the cell occupancies are set to zero for
all paths and for all user classes in the network.

x
i,m
p,0 = 0, ∀i ∈ C, p ∈ P,m ∈ M; (20)

y
i,j,m

p,0 = 0, ∀(i, j) ∈ E,p ∈ P,m ∈ M. (21)

Source cells (CR):
During network loading vehicles get into the source cells according to the demand
pattern rm

p,t . Based on the capacity (in and outflow rate), vehicles move to the next
cell. For each path p ∈ P containing source cells i ∈ CR , the occupancy updates can
be expressed as:

x
i,m
p,t = rm

p,t−1 + x
i,m
p,t−1 − y

i,j,m

p,t−1, ∀j ∈ �i, t = {1, . . . , te + 1}, m ∈ M, (22)

x
i,m
p,t = x

i,m
p,t−1 − y

i,j,m

p,t−1, ∀j ∈ �i, t = {te + 2, . . . , tf }, m ∈ M. (23)

Now, each O-D pair has unique demand values for each user class m ∈ M of the
network. The cumulative departure rate should be equal to the total demand for a OD
pair.

∑

p∈P w

te∑

t=0

rm
p,t = dm

w , ∀w ∈ W,m ∈ M; (24)

∑

m∈M

dm
w = dw, ∀w ∈ W. (25)

Ordinary cells (CO ):
An Ordinary cell, i ∈ CO has one incoming link and one outgoing link. The following
equation updates the cell occupancy of an ordinary cell for a user class m ∈ M:

x
i,m
p,t = x

i,m
p,t−1 + y

k,i,m
p,t−1 − y

i,j,m

p,t−1, ∀p 
 i, k ∈ �−1
i , j ∈ �i, t = {1, . . . , tf }. (26)

Also, if i not part of path p, then x
i,m
p,t = 0.

Diverging-merging cells (CD):
The occupancy of any diverging and merging cell, i ∈ CD ∪ CM for a user class,
m ∈ M is updated updated as follows:

x
i,m
p,t = x

i,m
p,t−1 +

∑

k∈�−1
i

y
k,i,m
p,t−1 −

∑

j∈�i

y
i,j,m

p,t−1, ∀p 
 k, i, j ; k ∈ �−1
i ; j ∈ �i; t = {1, . . . , tf }.

(27)
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Sink cells (CS):
A sink cell i ∈ CS has limited in-flow capacity Qs , however the storage capacity is
unlimited ( Ns → ∞). The cell occupancy x

i,m
p,t equals with the cumulative arrivals

of path p in the period from 0 to t for user class m ∈ M.

x
i,m
p,t = x

i,m
p,t−1 + y

k,i,m
p,t−1, ∀i ∈ CS; p 
 i; k ∈ �−1

i ; t = {1, . . . , tf }. (28)

Ordinary links (EO ):
At the aggregate flow level, we have:

ȳ
i,j
t = min

(
x̄i
t , Q

i, Qj , δ(Nj − x̄
j
t )

)
∀(i, j) ∈ EO; t = {1, · · · , tf } (29)

At the disaggregate level, we use the proportion of path-based cell occupancy x
i,m
p,t

and aggregate cell occupancy x̄i
t to determine the path flow y

i,j,m
p,t

y
i,j,m
p,t = min

(
x̄i
t , Q

i, Qj , δ(Nj − x̄
j
t )

)
× x

i,m
p,t

x̄i
t + ς

∀(i, j) ∈ EO ;p 
 i; j ∈ �i; t = {1, · · · , tf }
(30)

Here ς > 0 is an infinitesimal number used to make sure that the denominator is
different from 0.

Diverging links (ED):
The updates are similar to Ukkusuri et al. (2012) and aggregate occupancies are
computed as follows:

x̃
i,j
t =

∑

∀p
(i,j),m∈M

x
i,m
p,t ∀ i ∈ CD; j ∈ �i; t = {1, · · · , tf } (31)

x̄i
t =

∑

j∈�i

x̃
i,j
t ∀i ∈ CD; t ∈ {1, · · · , tf }, (32)

For the diverging flows:
For all i ∈ CD; j ∈ �i; t = {1, · · · , tf },

ȳ
i,j
t = min(x̃i,j

t , Qj , δ(Nj − x̄
j
t )) × min

⎛

⎝1,
Qi

∑
j ′∈�i

(
min(x̃i,j ′

t , Qj ′
, δ(Nj ′ − x̄

j ′
t ))

)
+ μ

⎞

⎠

(33)

Ukkusuri et al. (2012) use the proportional rule to obtain the flow for each path
from each O-D pair:

y
i,j,m
p,t = ȳ

i,j
t × x

i,m
p,t

x̃
i,j
t + ς

∀ i ∈ CD; p 
 i; j ∈ �i; t ∈ {1, · · · , tf } (34)
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Merging links (ED):
The updating for merging links are computed by the following equations:

For all i ∈ CM ; k ∈ �−1
i ; t = {1, · · · , tf },

ȳ
k,i
t = min(Qk, x̄k

t ) × min

⎛

⎝1,
min

(
Qi, δ(Ni − x̄i

t )
)

∑
k′∈�−1

i

(
min(Qk′

, x̄k′
t )

)
+ ς

⎞

⎠ . (35)

The flow for each path of each O-D pair can be computed as:

y
k,i,m
p,t = ȳ

k,i
t × x

k,m
p,t

x̄k
t + ς

∀ i ∈ CM ; p 
 i; k ∈ �−1
i ; t ∈ {1, · · · , tf } (36)

Appendix B: Travel time estimation using CTM

Ramadurai (2009) and Han et al. (2011) provide details on computing average travel
time within the path-based CTM model. For the completeness of our discussion we
mention the equations from Ukkusuri et al. (2012).

νp,t,t ′ = max

(

0,
t∑

h=0

rp,h − xs
p,t ′

)

,

∀p ∈ P ; s ∈ p ∩ CS; t = {0, · · · , te}; t ′ = {t, · · · , tf } (37)

T Tp,0 =

Tf −1∑

h=0

(νp,0,h − νp,0,h+1)h

rp,0 + μ
, ∀p ∈ P (38)

T Tp,t =

Tf −1∑

h=t

(νp,t,h − νp,t,h+1 + νp,t−1,h+1 − νp,t−1,h)(h − t)

rp,t + μ
,

∀p ∈ P ; s ∈ p ∩ CS; t = 0, · · · , T . (39)

Users from all classes experience the same travel time. Therefore, the average travel
time computation is not specific for a class.

rp,h =
∑

m∈M

rm
p,t , (40)

xs
p,t ′ =

∑

m∈M

x
s,m
p,t . (41)

Now, the max operator can be replaced by the following complementarity conditions:

0 ≤ νp,t,t ′ ⊥ νp,t,t ′ −
(

t∑

h=0

rp,h − xs
p,t ′

)

≥ 0

∀p ∈ P ; t = {0, · · · , te}; t ′ = {t, · · · , tf }. (42)
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Algorithm step (Zhan and Ukkusuri 2014)
Step 0: Set counter k=0. Initialize a feasible departure rate.
Step 1: Run the simulation CT M(γ k) and compute T C(γ k), CC(γ k), GC(γ k).

Step 2: Decompose γ k = (γ k
1 , γ k

2 , ..., γ k
m)T .

Step 3: Find the λk(γ k) that ensures most number of user classes and OD pairs sat-
isfy: ||Ti(γ

k
i ) − Ti(γ

k−1
i )|| ≤ α||γ k

i − γ k−1
i )||, in which Ti(γ

k
i ) = Pr
i

[γ k
i −

λk(γ k)GCi(γ
k)]

Step 4: Update departure rate γ k
i using mapping Ti only for those user classes and OD

pairs that satisfy the condition in Step 3. For others that not satisfied, set γ k
j = γ k−1

j .
Step 5: If none of the user classes and OD pairs are found satisfy condition in Step 3,
set γ k

j = γ k−1
j , λk(γ k) = λk−1(γ k−1)/2.

Step 6: If ||z∗ − γ k|| ≤ ε, terminate the algorithm, γ ∗ = z∗. Otherwise γ k+1 = γ k ,
Set k = k + 1, go to step 1.

Appendix C: DUE Results

C.1. DUE-1 with base case: Sioux-Falls
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Fig. 17 PMCA-DUE-1 results base case: no carbon cap
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C.2. DUE-2 with 2 % reduction: Sioux-Falls

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:540−550 Path:1

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:540−550 Path:2

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:540−550 Path:3

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:540−570 Path:4

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:540−570 Path:5

0 10 20 30 40 50
0

1

2

C
o

s
t

User Group:1 OD:571−541 Path:10

0 10 20 30 40 50
0

1

2
C

o
s
t

User Group:1 OD:571−550 Path:12

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:540−550 Path:1

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:540−550 Path:3

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:540−570 Path:4

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:540−570 Path:5

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:571−541 Path:10

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:2 OD:571−541 Path:11

0 10 20 30 40 50
0

0.2

0.4

C
o

s
t

User Group:2 OD:571−550 Path:12

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:3 OD:551−541 Path:6

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:3 OD:551−541 Path:8

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1

C
o

s
t

User Group:3 OD:551−570 Path:9

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1

C
o

s
t

User Group:3 OD:571−541 Path:10

0 10 20 30 40 50
0

0.5

1

C
o

s
t

User Group:3 OD:571−541 Path:11

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1

C
o

s
t

User Group:3 OD:571−550 Path:12

0 10 20 30 40 50
0

1

2

3

C
o

s
t

User Group:4 OD:540−550 Path:3

0 10 20 30 40 50
0

2

4

C
o

s
t

User Group:4 OD:540−570 Path:4

0 10 20 30 40 50
0

2

4

C
o

s
t

User Group:4 OD:540−570 Path:5

0 10 20 30 40 50
0

0.5
1

1.5
2

2.5
3

C
o

s
t

User Group:4 OD:551−541 Path:8

0 10 20 30 40 50
0.5

1

1.5

C
o

s
t

User Group:4 OD:551−570 Path:9

0 10 20 30 40 50
0.1

0.15
0.2

0.25
0.3

0.35
0.4

C
o

s
t

User Group:5 OD:551−541 Path:6

0 10 20 30 40 50
0

0.2

0.4

C
o

s
t

User Group:5 OD:551−541 Path:8

0 10 20 30 40 50
0

0.1

0.2

C
o

s
t

User Group:5 OD:551−570 Path:9

0 10 20 30 40 50
0.5

1

1.5

C
o

s
t

User Group:4 OD:551−570 Path:9

0 10 20 30 40 50
0.1

0.15
0.2

0.25
0.3

0.35
0.4

C
o

s
t

User Group:5 OD:551−541 Path:6

0

10

20

 D
e

p
a

rt
u

re
 r

a
te

0
0.5
1
1.5
2
2.5
3

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

10

20

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0
2
4
6
8
10

 D
e

p
a

rt
u

re
 r

a
te

0
2
4
6
8
10

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

0
2
4
6
8
10

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

15

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0
1
2
3
4
5
6

 D
e

p
a

rt
u

re
 r

a
te

0

10

20

 D
e

p
a

rt
u

re
 r

a
te

0
0.5
1
1.5
2
2.5
3

 D
e

p
a

rt
u

re
 r

a
te

0

2

4

 D
e

p
a

rt
u

re
 r

a
te

0

5

10

 D
e

p
a

rt
u

re
 r

a
te

Fig. 18 PMCA-DUE-2 results: 2 % reduction from base case

C.3. DUE-3 with 2 % reduction: Sioux-Falls
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Fig. 19 PMCA-DUE-3 results: 2 % reduction from base case
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