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(b) Vehicle trajectory points at 17:00 pm in a small region of Jinan

Figure 1: Spatio-temporal heterogeneity in trajectory data



Challenges
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(b) Vehicle trajectory points at 17:00 pm in a small region of Jinan

Figure 1: Spatio-temporal heterogeneity in trajectory data

For data:

* Data sparsity

[Taxis only account for a small faction of the total traffic |
* Complex spatio-temporal pattern

[Road network are influenced by the rhythm of the city]

* Data unreliability

[Traffic states are obtained from sample vehicle trajectories ]

For model:

* Interpretability

[Given the reliability issue in the observed data, it is desired to have a model
making a certain level of imputation interpretability]

* Real-time inference

[Real-world applications require update traffic information for the large road

network as frequently as possible.]



Problem Definition
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Problem statement:

Definition:

Road adjacency graph: G = {R, A}
Traffic speed data: X, ., = [x{ . [r € R]

Number of trajectories: S, ., = s} , |r € R|

Observability mask: M, ., = [m{o:tn|r € R]

Impute all the missing entries in X;,.; by constructing a filled matrix X to:t,» While providing the imputation

confidence P;.; = [p{,.t,|r € R] of the results, which can be denoted as F (X, M) — [X, P].



Self-interested Coalitional Learning (SCL)

Overall framework:
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Spatio-Temporal Imputation

Main task: reconstructor f imputes complete X

from observed X.

A: f(X) =X, L4 = lossg(X, X)
B:d(X,X)=P, Lg=lossg(P,M)

Companion task: Quantify the uncertainty /

confidence given partially observed X and the

filled data X.



Self-interested Coalitional Learning (SCL)

* Conventional approaches:

Main task: reconstructor f imputes complete X - Multi-task learning: Exploit the shared information and
underlying commonalities between the two tasks.

from observed X. minA - lossg + (1 —A) - lossg, A €(0,1)

f.d
X A o Drawbacks:
A: f (X ) = X, LA = lOSSA(X , X ) X Two tasks may have some contradictions in some settings
A X Tuning hyper-parameter A is trick
B:d(X,X)=P, Lg=Ilossg(P,M) s WPEp Y

- Adversarial leaning: Make two tasks learn against each
other, thus improves the performance of both tasks.

Companion task: Quantify the uncertainty / n};n mc?xM © logd(X, f(X)) + (1 - M) © log(1 - d(X, f(X)))
confidence given partially observed X and the o Drawbacks:
filled data X. X loss, is not explicitly optimized, potential loss of information

X Notoriously hard to train



Self-interested Coalitional Learning (SCL)

R  Animproved strategy: SCL
Main task: reconstructor f imputes complete X

from observed X.

A: f(X) = X, L4 = lossa(X, X) + lossy (X, P)

A: f(X) = X, L4 = loss4(X, )A() B:dX,9(X,X)) =P, Lpg=Ilossg(P,M).

B:d(X,X)=P, Lpg=lossg(P,M)
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Self-interested Coalitional Learning (SCL)

Gradient
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Model Construction
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Figure 4: Detailed ST-SCL model design for our problem Figure 5: Training and online serving stages in ST-SCL



Experiments

Dataset

Road network: The simplify road network of Jinan comprises 2522 nodes and 608 edges.
Trajectories: GPS dataset over a period of 30 days. The average sampling rate is 3 seconds per point.

Settings: Time slot set as 5 minutes and partition the data into 28 days of training and 2 days for evaluation.

Time period Time Missing rate
All day 00:00-24:00 37.9%
Morning peak | 06:00-10:00 15.4%
Evening peak | 10:00-18:00 17.1%
Flat peak 18:00-20:00 27.0%
Night hour | 20:00-06:00 77.2%




Experiments

Table 1: Evaluation results of ST-SCL and the baseline methods for morning and evening peak, flat peak, and night hours

Methods Overall Morning peak Evening peak Off peak Night
MSE RMSE | MSE RMSE | MSE RMSE | MSE RMSE | MSE RMSE
GAIN 0.1035 0.3217 | 0.0993 0.3151 | 0.0889 0.2982 | 0.0886 0.2977 | 0.2095 0.4577
MIWAE 0.1053  0.3245 | 0.1065 0.3263 | 0.1114 0.3338 | 0.1018 0.3191 | 0.0983 0.3135
MCFlow 0.0751  0.2740 | 0.0807 0.2841 | 0.0761 0.2759 | 0.0726 0.2694 | 0.0773  0.2730
MF 0.1314 0.3625 | 0.1326 0.3641 | 0.1186 0.3444 | 0.1182 0.3438 | 0.2295 0.4791

ST-SCL 0.0679 0.2605 | 0.0740 0.2720 | 0.0697 0.2640 | 0.0677 0.2601 | 0.0617 0.2483

ST-SCL-M | 0.0703  0.2651 | 0.0752 0.2742 | 0.0718 0.2680 | 0.0683 0.2613 | 0.0725 0.2693
ST-SCL-G 0.1518 0.3896 | 0.1486 0.3854 | 0.1469 0.3832 | 0.1511 0.3837 | 0.1612 0.4014
ST-SCL(-D) | 0.0683 0.2613 | 0.0747 0.2733 | 0.0704 0.2653 | 0.0678 0.2603 | 0.0622 0.2493
ST-SCL(-V) | 0.0695 0.2636 | 0.0754 0.2746 | 0.0724 0.2691 | 0.0695 0.2636 | 0.0631 0.2512




Experiments
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Figure 6: The performance under different missing rate
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Figure 7: Relationships of normalized historical average and original/reconstructed speeds
under different trajectory supports and confidence levels.
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Conclusion and Perspective

We propose the ST-SCL, a new framework that performs real-time network-wide traffic state imputation with partially
observed data, while providing interpretable confidence on the results.

We develop a novel self-interested coalitional learning (SCL) scheme that can boost the performance of a semi-
supervised task by forge cooperation with an extra discriminator in a self-interested manner.

We design highly customized reconstructor and discriminator for the traffic state imputation problem.

Semi-supervised setting
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