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ABSTRACT
This paper develops a complementarity formulation for a multi-user class,
simultaneous route and departure time choice dynamic user equilibrium
(DUE) model. A path-based multiclass cell transmission model (mCTM) is
embedded to propagate the traffic flow on the network. Heterogeneous
user classes are incorporated in the new formulation and heterogene-
ity is based on different preferred arrival times, cost perception for travel
time, early and late arrival penalties. Multiple model properties have been
showed. The proposed model is solved as an equivalent non-monotone
variational inequality (VI) problem defined on a product set. A modified
proximal point algorithm is used to solve the proposed non-monotone
VI problem. Numerical results show that the solution approach is able to
find the equilibrium or close to equilibrium solutions. The new formulation
and solution approach show the feasibility of solving the multiclass DUE
problem for general traffic networks.
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1. Introduction

The importance of incorporating multiple user classes in transportation network modeling has long
been realized. The fact that transportation systems have many classes of users has motivated many
researchers to develop models and integrated frameworks that capture heterogeneous user behav-
iors. Dafermos (1972) was among the first researchers to propose the notion of multiclass traffic
equilibrium. The notion states that all classes of users are to be assigned to the network so that no
one in each class can improve his or her travel cost by unilaterally changing his or her route. This is a
natural extension ofWardrop’s first principle from single user class tomultiple user classes.While there
are comprehensive studies on staticmulticlass traffic assignment, the literature on dynamicmulticlass
traffic assignment is limited.

Compared with static traffic assignment, dynamic traffic assignment (DTA) shows great advantage
by capturing more realistic traffic flow propagation characteristics and incorporating time dimen-
sion into the analysis. DTA models have seen substantial development since the pioneering work of
Merchant and Nemhauser (1978). After 30 years of development, the DTA models in the literature
can be classified into four broad methodological groups as suggested by Peeta and Ziliaskopoulos
(2001): mathematical programming, optimal control, variational inequality (VI) and simulation-based
approach. Under such context, studying the multiclass dynamic user equilibrium (DUE) is particu-
larly useful in analyzing the travel behaviors and complex interactions of heterogeneous users in the
traffic network. This has important application in morning commuting problem, in which multiple
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user groups with different values of time (VOT) and preferred arrival times traveling on a congested
network.

In the literature, various multiclass DTAmodels with different definitions of user classes have been
developed to incorporate the interactions among heterogeneous users in the traffic network. Based
on the differences on the behavioral assumptions on user classes, these multiclass DTA models can
be classified into three categories: (1) users with different vehicle characteristics, e.g. cars and trucks
(Bliemer andBovy2003; Bliemer 2007;Mesa-ArangoandUkkusuri 2014); (2) userswith adifferent route
choice behavior (Lo, Ran, and Hongola 1996; Ran, Lee, and Shin 2002; Szeto, Jiang, and Sumalee 2011)
and (3) users with different preferred arrival times and VOT (Ramadurai et al. 2010; Han, Ukkusuri, and
Doan 2011; Liu and Nie 2011; Pang et al. 2012).

Lo, Ran, and Hongola (1996) and Ran, Lee, and Shin (2002) were among the first to formulate the
multiclass DTA model as a mathematical programming problem through a VI approach. Travelers are
classified solely based on their route choice behavior, who follows: (a) predetermined or fixed routes,
(b) stochastic dynamicuser-optimal assignment and (c) dynamicuser-optimal assignment. Stronguser
behavioral assumptions were made in this model, which lacks flexibility in modeling realistic travel
patterns in the network. From a different perspective, Bliemer and Bovy (2003) proposed a quasi-VI
DTAmodel to capture the interactions between user groups with different vehicle characteristics, e.g.
cars and trucks. Different link travel time functionswere used for each user class, and only route choice
was considered in this model. Bliemer (2007) proposed a new analytical multiclass dynamic network
loadingmodel as part of a simulation-based DTAmodel, in which the dynamic queuing, spillback and
the heterogeneity in vehicle characteristics are captured.

Ramadurai et al. (2010) developed a single bottleneck model with heterogeneous commuters as a
linear complementarity problem (CP) based on Vickrey’s (1969) single bottleneck model. Liu and Nie
(2011) studied the morning commute problemwith heterogeneous users using the single bottleneck
model with two parallel paths. Analytical solutions of no-toll equilibrium, system optimal (SO) and
time-based SO were examined. Pang et al. (2012) introduced a linear complementarity system formu-
lation for a continuous-time multiclass single bottleneck DUE model. Analysis on solution existence
and numerical solution scheme were discussed in the paper. The single bottleneck model is a con-
venient and tractable tool to analyze the heterogeneous commuters’ travel behavior on a single link.
However, the single bottleneck assumption limits its application in general traffic networks.

The introductionof cell transmissionmodel (CTM) (Daganzo1994, 1995) has provided anewoppor-
tunity and framework to account for the spatial queuingbehavior inDTAmodeling (Lo andSzeto 2002;
Szeto and Lo 2004; Han, Ukkusuri, and Doan 2011; Szeto, Jiang, and Sumalee 2011; Doan and Ukkusuri
2012;Ukkusuri, Han, andDoan2012). Several efforts havebeenmade to incorporatemulticlass analysis
in the cell-based DTA framework. Tuerprasert and Aswakul (2010) proposed amulticlass cell transmis-
sionmodel (mCTM) for heterogeneous users in the traffic network. However, themCTMwas proposed
only as a simulation-based network loading model, without being applied to any traffic assignment
model. Szeto, Jiang, and Sumalee (2011) proposed a cell-basedmulticlassDTAproblem,whichwas for-
mulated as a fixed-point problem. Themodel embeds aMonte Carlo-based stochastic CTM to capture
the effect of physical queues and the random evolution of traffic states during flow propagation. The
user classes are classified based on different levels of perception error on travel time. Still, only route
choice is modeled and the departure time choice is not considered. Han, Ukkusuri, and Doan (2011)
proposed a DUE problem with an embedded CTM. The model is capable of capturing departure time
choice, elastic demand as well as user heterogeneity. The weakness lies in that it is only applicable
to networks with single origin–destination (OD) and multiple parallel paths. Ukkusuri, Han, and Doan
(2012) extended Han’s work to general traffic networks. A complementarity formulation for the CTM-
based DUE model with both departure time and route choices was proposed. However, due to the
increase of modeling complexity in the formulation, only homogeneous users are considered.

Motivated from previous studies, we propose a CP formulation for a multi-user class, simultaneous
route and departure time choice DUEmodel. The heterogeneity setting amongmulti-user classes fol-
lows the works of Cohen (1987), Arnott, de Palma, and Lindsey (1988, 1994), and Szeto and Lo (2004)
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that focuses on user groups with different preferred arrival times, cost perception for travel time, early
and late arrival penalties. Different vehicle types are not considered in this study. By incorporating
both the route choice and departure time choice in the model, detailed travel behaviors for hetero-
geneous users under equilibrium condition can be obtained. A path-based mCTM is developed and
embedded to propagate the traffic flow on the network. The spatial queuing on links and traffic spill-
back are captured. Themodel is solvedas anequivalent VI problem. Thismodel is built onworks ofHan,
Ukkusuri, andDoan (2011) andUkkusuri, Han, andDoan (2012).While thepreviousmodels only subject
to restricted network or single user class, the proposed formulation extends the applicability to multi-
user class and general networks. Various model properties, such as OD level first-in-first-out (FIFO),
continuity, non-monotonicity and solution existence, have been proved. A modified proximal point
algorithm (PPA) is used to solve the non-monotone, non-differentiable VI problem, and has shown to
converge to the exact or close to equilibrium solutions on the test networks.

This work contributes to the literature in following aspects:

(1) Wepropose anewmulticlass CTM (mCTM) for general networks,which allows for trackingdetailed
sub-flow from each user group in the flow propagation.

(2) We develop a new multiclass DUE model that is formulated as a CP and prove the solution
existence along with many other model properties.

(3) We highlight the non-monotonicity and discontinuity issues of the average travel time func-
tion. Such issues are common in many CTM-based DTA models, but often overlooked or not well
addressed.We also propose a simple background flowapproach to handle thediscontinuity issue.

(4) We develop amodified PPA to solve the large-scale non-monotone VI problem. Extensive numer-
ical experiments are conducted on multiple networks and different demand settings to demon-
strate the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 introduces the formulations of mCTM and
the CP formulations of theDUEmodel. Section 3 shows variousmodel properties and Section 4 further
proves the solution existence. Section 5 presents the solution approach of the proposed problem.
Multiple numerical experiments are conducted and analyzed in Section 6 and Section 7 concludes the
paper.

2. Problem formulation

2.1. Model description

We consider a DUE problem in a general networkwithmultiple ODpairs and heterogeneous users. For
eachODpair and user group, a number of ‘selfish’ drivers travel from origin to destination by selecting
the route and departure timewith the least cost. The travel cost is composed of three parts: travel time
cost, early and late penalties. Higher late penalty is considered comparedwith early arrival penalty. The
user groups are differentiated by preferred arrival times, cost perception for travel time, early and late
arrival penalties rather than vehicle types. ThemCTM formulations and the CP formulation of the DUE
problem are presented as follows.

2.2. Notations

Indices:

w index for origin–destination pairs
p index for paths
g index for user groups
i, j index for cells
t index for time interval



4 X. ZHAN AND S. V. UKKUSURI

Parameters:

αw
g ,β

w
g , γ

w
g unit cost of travel time, early and late arrival for OD pairw and user group g. βw

g < αw
g <

γw
g

t∗wg preferred arrival time for OD pair w and user group g
dwg total demand from OD pairw and user group g
η infinitesimal parameter to avoid zero denominator
T , Tf maximum departure time and overall time horizon
Ni jam density of cell i
Qi flow capacity out of cell i
δ Backward-to-forward shockwave propagation ratio

Sets:

C set of cells. CO, CR, CS, CD, CM denote sets of ordinary, source, sink, diverging, merging cells
E set of links. EO, ED, EM: sets of ordinary, diverging, merging links
G set of user groups
�−1
i set of predecessors of cell i

�i set of successors of cell i
W set of all OD pairs
Pw set of paths from OD pairw
P set of all paths, P = ∪w∈WPw

T set of all time intervals up to T, T � {0, . . . , T}
Tf set of all time intervals up to Tf , Tf � {0, . . . , Tf }

Variables:

xip,g,t cell occupancy of cell i at time t of user group g for the flow on path p

yi,jp,g,t flow from cell i to j time t of user group g for the flow on path p
x̄it aggregate cell occupancy of cell i at time t. x̄it = ∑

g
∑

p x
i
p,g,t ,∀i ∈ C, t ∈ Tf

ȳi,jt aggregate flow from cell i to j at time t. ȳi,jt = ∑
g
∑

p y
i,j
p,g,t , ∀(i, j) ∈ E, t ∈ Tf

x̃i,jt aggregate cell occupancy from cell i to j at time t going to cell j
rp.g.t departure rate at time t for the flow using path p
TTap,t average travel time for the flow using path p at time t
vp,t,t′ auxiliary variable for average travel time estimation

2.3. Multiclass path-based cell transmissionmodel (mCTM)

The multiclass path-based CTM model developed in this work is a multiclass extension of the single
user group CTM formulation in Ukkusuri, Han, and Doan (2012). In this model, each link is divided into
homogeneous cells with the length equal to the distance traveled at free-flow speed within a single
simulation interval. The amount of flow inside a cell and the flow from one cell to another cell are
modeled as cell occupancy xip,g,t and flow yi,jp,g,t with index on paths, user groups and time steps. By
tracking the flow of each user group, the multiclass flow is properly propagated within the network.
The detailed formulations of mCTM are presented as follows:
Initialization

xip,g,0 = 0, yi,jp,g,0 = 0, ∀i ∈ C, (i, j) ∈ E, p ∈ P, g ∈ G (1)

Source cell CR

xip,g,t = rp,g,t + xip,g,t−1 − yi,jp,g,t−1, ∀i ∈ CR, i ∈ p, g ∈ G, j ∈ �i, t = {1, . . . , T + 1} (2)
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xip,g,t = xip,g,t−1 − yi,jp,g,t−1, ∀i ∈ CO, i ∈ p, g ∈ G, j ∈ �i, t = {T + 2, . . . , Tf } (3)

Also, the demand for each OD pair satisfies:

∑
p∈Pw

T∑
t=0

rp,g,t = dwg , ∀w ∈ W , g ∈ G (4)

Ordinary cells CO
The ordinary cells are cells with single predecessor and successor. The cell occupancy is updated as

follows:

xip,g,t = xip,g,t−1 + yk,ip,g,t−1 − yi,jp,g,t−1, ∀i ∈ CO, i ∈ p, g ∈ G, k ∈ �−1
i , j ∈ �i, t ∈ Tf\{0} (5)

Diverging/merging cells CD, CM and CDM
We define cells with single predecessor and multiple successor as diverging cells CD; cells with

multiple predecessor and single successor as merging cell CM; cells with multiple predecessors and
successors as diverging/merging cells CDM. For diverging and merging cells (i ∈ CD ∪ CM ∪ CDM), the
following equation applies:

xip,g,t = xip,g,t−1 +
∑

k∈�−1
i

yk,ip,g,t−1 −
∑
j∈�i

yi,jp,g,t−1, ∀{k, i, j} ⊂ p; g ∈ G, t ∈ Tf\{0} (6)

Sink cells CS

xip,g,t = xip,g,t−1 + yk,ip,g,t−1, ∀i ∈ CS, i ∈ p; g ∈ G, k ∈ �−1
i , t ∈ Tf\{0} (7)

Ordinary links EO
The aggregate flow ȳi,jt satisfies:

ȳi,jt = min (x̄it ,Q
i,Qj , δ(Nj − x̄jt)), ∀(i, j) ∈ EO, t ∈ Tf\{0} (8)

where x̄it is the aggregated cell occupancy of cell i at time t, computed as

x̄it =
∑
g∈G

∑
∀p�i

xip,g,t (9)

At the disaggregate level, the flow can be represented as

yi,jp,g,t = min (x̄it ,Q
i,Qj, δ(Nj − x̄jt)) × xip,g,t

x̄it + ξ
, ∀(i, j) ∈ EO, p � i, g ∈ G, j ∈ �i, t ∈ Tf\{0} (10)

where ξ is an infinitesimal positive number to avoid dividing by 0 error.
Diverging links ED
For the flow on diverging links, we follow the strategy discussed in Ukkusuri, Han, and Doan (2012),

in which the path flow yi,jp,g,t is determined using the proportion of path-based cell occupancy xip,g,t in

the aggregate cell occupancy x̃i,jt at cell i and time t oriented to cell j

x̃i,jt =
∑
g∈G

∑
∀p�(i,j)

xip,g,t , ∀i ∈ CD, j ∈ �i, t ∈ Tf\{0} (11)

ȳi,jt = min (x̃i,jt ,Q
j , δ(Nj − x̄jt)) × min

(
1,

Qi∑
j′∈�i

(min( x̃i,j
′

t ,Qj′ , δ(Nj′ − x̄j
′
t ))) + ξ

)
(12)

yi,jp,g,t = ȳi,jt × xip,g,t

x̃i,jt + ξ
, ∀i ∈ CD, p � i, g ∈ G, j ∈ �i, t ∈ Tf\{0} (13)

Merging links EM
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Similar to the diverging case, the flow for the merging links EM can be written as

ȳk,it = min (Qk , x̄kt ) × min

⎛
⎝1,

min (Qi, δ(Ni − x̄it))∑
k′∈�−1

i
(min (Qk′ , x̄k

′
t )) + ξ

⎞
⎠ (14)

yk,ip,g,t = ȳk,it × xkp,g,t
x̄kt + ξ

, ∀i ∈ CM, p � i, g ∈ G, k ∈ �−1
i , t ∈ Tf\{0} (15)

2.4. Travel time estimation

In DTA problems, the path travel times are typically used as the delay operator to measure the cost
of the flow departing at any given time steps. This work follows the idea of computing average path
travel time from the cumulative departure and arrival pattern that discussed in Han, Ukkusuri, and
Doan (2011) andUkkusuri, Han, andDoan (2012). A similar approach is also used in Lo and Szeto (2002)
and Szeto and Lo (2004). However, we make several modifications to improve the accuracy as well
as guarantee the continuity of the average travel time computation. The average path travel time is
computed using the following equations:

vp,t,t′ = max

⎛
⎝0,

∑
g∈G

t∑
h=0

(rp,g,h + μ) −
∑
g∈G

xsp,g,t′

⎞
⎠ , ∀t′ = t, . . . , Tf (16)

TTap,0 =
∑Tf−1

h=0 (vp,0,h − vp,0,h+1)(h + 1)∑
g∈G(rp,g,0 + μ)

, ∀p ∈ P (17)

TTap,t =
∑Tf−1

h=t (vp,t,h − vp,t,h+1 + vp,t−1,h+1 − vp,t−1,h)(h + 1 − t)∑
g∈G(rp,g,t + μ)

, ∀p ∈ P, t ∈ T (18)

The variable vp,t,t′ is the amount of flow that departs before time t but has not arrived at the
sink cell s of path p at time t′. The term vp,t,h − vp,t,h+1 + vp,t−1,h+1 − vp,t−1,h corresponds to the
amount of the flow departed at time t and arrived at time step h + 1, which has path travel time
equal to h − t + 1. Hence, the computation of TTap,t averages the path travel time using the weight
of the proportion of flow arrived. Furthermore, we introduce an independent fixed background
flow of amount μ assigned on each path and user group in addition to the investigated depar-
ture flow rp,g,t . Different from Lo and Szeto (2002), Szeto and Lo (2004), Han, Ukkusuri, and Doan
(2011) and Ukkusuri, Han, and Doan (2012), we take μ to be a small positive value, but do not allow
μ to take an arbitrarily small value (μ /→0). As we will show in the later section, the value μ plays
an important role on the continuity and the smoothness of the average path travel time function
TTap,t(r).

One can notice that the group index is not appearing in TTap,t calculation. This is because different
user groups are homogeneous in terms of vehicle characteristics and travel time computation. Thus,
different groups of users on the same path departing at the same timewill experience the same travel
time. The equivalent complementarity condition of Equation (16) can be written as

0 ≤ vp,t,t′⊥vp,t,t′ −
⎛
⎝∑

g∈G

t∑
h=0

(rp,g,h + μ) −
∑
g∈G

xsp,g,t′

⎞
⎠ ≥ 0, ∀p ∈ P, t ∈ T, t′ = t, . . . , Tf (19)
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2.5. Overall model

2.5.1. Dynamic equilibrium condition
In analogy to the static multiclass user equilibrium, the multiclass DUE is defined as: no flow in each
user group of each OD pair can improve its travel cost by unilaterally changing its route and departure
time. The complementarity formulation of the equivalent multiclass DUE condition is defined as:

0 ≤ rp,g,t⊥αw
g TT

a
p,t + βw

g ep,g,t + γw
g lp,g,t − C∗w

g ≥ 0, ∀w ∈ W , g ∈ G, p ∈ Pw , t ∈ T (20)

where αw
g ,β

w
g and γw

g are unit cost for average path travel time, early and late arrival penalties for
user group g and OD pair w, which satisfy βw

g < αw
g < γw

g . ep,g,t , lp,g,t are early and late arrival times,
computed as

ep,g,t = max (0, t∗wg − t − TTap,t), ∀w ∈ W , p ∈ Pw , g ∈ G, t ∈ T (21)

lp,g,t = max (0, t + TTap,t − t∗wg ) = ep,g,t − (t∗wg − t − TTap,t), ∀w ∈ W , g ∈ G, p ∈ Pw , t ∈ T (22)

Equation (21) can be converted into the following complementarity condition:

0 ≤ ep,g,t⊥ep,g,t − (t∗wg − t − TTap,t) ≥ 0, ∀w ∈ W , g ∈ G, p ∈ Pw , t ∈ T (23)

Furthermore, the demand satisfaction condition must be satisfied under the equilibrium,

0 ≤ C∗w
g ⊥

∑
p∈Pw

T∑
t=0

rp,g,t − dwg ≥ 0, ∀w ∈ W , g ∈ G (24)

2.5.2. Overall formulation for the DUEmodel
Summarizing all the formulations discussed above, the overall formulation of the problem is listed
below:

0 ≤ rp,g,t⊥αw
g TT

a
p,t + βw

g ep,g,t + γw
g lp,g,t − C∗w

g ≥ 0

0 ≤ ep,g,t⊥ep,g,t − (t∗wg − t − TTap,t) ≥ 0

0 ≤ C∗w
g ⊥

∑
p∈Pw

T∑
t=0

rp,g,t − dwg ≥ 0

0 ≤ vp,t,t′⊥vp,t,t′ −
⎛
⎝∑

g∈G

t∑
h=0

(rp,g,h + μ) −
∑
g∈G

xsp,g,t′

⎞
⎠ ≥ 0

TTap,0 =
∑Tf−1

h=0 (vp,0,h − vp,0,h+1)(h + 1)∑
g∈G(rp,g,0 + μ)

TTap,t =
∑Tf−1

h=t (vp,t,h − vp,t,h+1 + vp,t−1,h+1 − vp,t−1,h)(h + 1 − t)∑
g∈G(rp,g,t + μ)

∀w ∈ W , g ∈ G, p ∈ Pw , t ∈ T, t′ = t, . . . , Tf (25)

3. Model properties

3.1. OD level first-in-first-out (FIFO) at equilibrium

As shown in Ukkusuri, Han, and Doan (2012), the cell level FIFOmay not hold due to the flow updating
method of diverging cells. However, the OD level FIFO is proved to hold at equilibrium for homoge-
neous user case (for detailed proof, see Ukkusuri, Han, andDoan 2012).Wemake use of this conclusion
to prove the OD level FIFO for heterogeneous users.
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Figure 1. O–D level FIFO illustration.

In homogeneous user case, assume that there is a flow departing at time t1 using path p1 arriving
at time t′1; and another flow departing at time t2 using path p2 arriving at time t′2, where p1 and p2 have
the same origin and destination. Ukkusuri, Han, and Doan (2012) showed that under UE condition, the
following case is impossible (Figure 1):

t1 < t2, t′2 < t′1

Also, the proof shows that the corresponding cost for path 1, C1, and cost for path 2, C2, always satisfy
C1 > C2. In other words, the users will always tend to choose the path that will reach the destination
early, since they have smaller cost regardless of their preferred arrival time. This is a consequence of
the assumption that β < α < γ .

Now consider the heterogeneous user case,without loss of generality, consider twogroups of users
1 and 2 from the same OD pair. Using the same two path examples, let fij be the flow of user group
j on path i, thus fi1 + fi2 = fi. Assume that we obtain a flow pattern under user equilibrium, say f11 >

0, f21 > 0, in which we do not have any restriction on the flow of group 2. Let Cij be the cost for user
group j using path i. Now consider user group 1 only, since path 1 is a longer path comparedwith path
2, thus we have C11 > C21, however, f11 = 0, thus this is not possible.

Next, consider a special case that f11 = 0, f21 = 0; in other words, users of group 1 only use path 1.
Since both path 1 and path 2 are valid paths for user groups 1 and 2. Thus, path 2 is also a valid path
for user group 1. Now consider user group 1 only, if there is an infinitesimal amount of flow f∗21 on
path 2, then we have C11 > C′

21, use the continuity of cost function C (which will be proved in Section
3.2), let f∗21 → 0, we obtain that C11 > C′

21 = C21. Again, since C11 > C21 this cannot be an equilibrium
solution. Hence again, t1 < t2, t′2 < t′1 is not possible of heterogeneous user case, and OD level FIFO
holds at equilibrium conditions.

3.2. Continuity

Lemma 3.1: Let x = CTM(r) be the function representation of cell occupancy x obtained from mCTM
computation. The function x = CTM(r) is continuous in r.

Proof: As shown in Section 2.3, all CTM equations except diverging and merging flow equations are
linear equations, in which continuity clearly holds. For diverging andmerging cells, it suffices to show
that yi,jp,g,t is continuous in x

i
p,g,t . Since the continuity clearly holds when x̃

i,j
t = ∑

g∈G
∑

∀p�(i,j) x
i
p,g,t > 0,

we need to show that for diverging and merging cells, limx̃i,jt →0y
i,j
p,g,t = 0.

For diverging link, from Equations (11) to (13), we have

0 ≤ yi,jp,g,t = xip,g,t
x̄it + ξ

· min (x̃i,jt ,Q
i,Qj , δ(Nj − x̄it)) · min

(
1,

Qi∑
j′∈�i

(min (x̃i,j
′

t ,Qi,Qj′ , δ(Nj′ − x̄it))) + ξ

)

≤ xip,g,t · x̃i,jt∑
g∈G

∑
∀p�(i,j) x

i
p,g,t + ξ
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And as x̃i,jt → 0, xip,g,t → 0, thus limx̃i,jt →0y
i,j
p,g,t = 0 holds. Similarly, for merging cell,

0 ≤ yi,jp,g,t = xkp,g,t
x̄kt + ξ

min (Qk , x̄kt ) × min

(
1,

min (Qi, δ(Nj − x̄it))∑
k′∈�i

(min (Qk′ , x̄k
′

t )) + ξ

)
≤ xkp,g,t

x̄kt + ξ
min (Qk , x̄kt )

thus clearly, limx̃i,jt →0y
k,i
p,g,t → 0 holds.

Finally, since the cell occupancy x is continuous in r, thus x = CTM(r) is continuous in r. �

Basedon thedefinition in Section 2.4,we can show that the averagepath travel time TTap,t is continuous
in r. Denote

TTa � (TTap,t)p∈P,t∈T, C � (Cp,g,t)p∈P,g∈G,t∈T

Proposition 3.2: TTa and C are continuous in r.

Proof: We prove that this proposition follows the logic: r → x → TTa → C. As,

TTap,t =
∑Tf−1

h=t (vp,t,h − vp,t,h+1 + vp,t−1,h+1 − vp,t−1,h)(h + 1 − t)∑
g∈G(rp,g,t + μ)

, ∀p ∈ P, t ∈ T

vp,t,t′ = max

⎛
⎝0,

∑
g∈G

t∑
h=0

(rp,g,h + μ) −
∑
g∈G

xsp,g,t′

⎞
⎠ , ∀t′ = t, . . . , Tf

By the continuity of themax function and cell occupancy x, it is clear that vp,t,t′ and TTap,t is continuous if∑
g∈G (rp,g,t + μ) > 0 and

∑
g∈G (rp,g,t + μ) /→0, more precisely, we have TTap,t > 0. As r ≥ 0 and μ is a

small positive value, hence
∑

g∈G (rp,g,t + μ) > 0 and
∑

g∈G (rp,g,t + μ) /→0 always hold. Hence, TTap,t(r)
is continuous in r.

The total cost Cp,g,t is given as

Cp,g,t = αw
g TT

a
p,t + βw

g max (0, ep,g,t) + γw
g max (0, lp,g,t)

= αw
g TT

a
p,t + βw

g max (0, t∗g − TTap,t) + γw
g max (0, TTap,t − t∗g)

The continuity of Cp,g,t is satisfied since themax function is continuous and TTap,t is continuous in r. �

Note in the above proposition, the background flow μ plays an important role in ensuring the
continuity of function TTap,t(r). We show this using the following simple example illustrated in Figure 2.

Consider the simple network of one user group and two cells in Figure 2. The flow capacity out of
source cell is 40, and the jam density is 500. Assuming μ → 0 and let the flow only depart at the first
time step, i.e. r1 > 0, r2 = 0. We are interested in the value of average path travel time of flow that
departs at the second time step TTa2 when r1 increases. Based on the definition of average path travel
time, the plots of the average path travel time TTa1 , TT

a
2 as a function of r1 are shown in Figure 3(a). It

can be easily observed that TTa2 is not continuous when r1 reaches the value of an integer times the
flow capacity of the cell (Q). This is because when such cases happen, the infinitesimal amount of flow

Figure 2. A simple illustration network.
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Figure 3. Illustration of the discontinuity of average path travel time whenµ → 0.

μ departed at second time step will be blocked by the flow departed at the first time step, and the
flow is held up for one additional time step. As μ → 0, r2 = 0, thus μ + r2 → 0 and

TTa2 = limμ→0μ · ((tb,1 + 1) − 1 + 1)

limμ→0μ
= tb,1 + 1

where tb,1 is the time when such blocking by r1 occurs (when r1/Q or r1/N is integer). Note that the
above case only occurswhen

∑
g∈G (rp,g,t + μ) → 0,which causes TTa2 to jump from tb,1 to tb,1 + 1due

to the blocking.
On the other hand, whenμ serves a fixed positive background flowof the network, andμ /→0. Then

following Equations (16)–(18), the average path travel time of TTa1 , TT
a
2 as a function of r1 is plotted in

Figure 3(b). As the background flow is independent from themodeled flow (r1 and r2), under this case,
the background flowμ serves as a soft buffer when such blocking occurs. As the average computation
is performed on proportions ofμ that arrived at tb,1 and tb,1 + 1, the resulting average path travel time
TTa2 is still continuous.

The above example shows that the background flow μ is vital to preserve the continuity of the
average path travel time TTa and hence the path cost C. It also suggests that the path cost function is
not differentiable nor smooth. The value ofμ controls the level of smoothness of the cost function. As
smaller μ will lead to more “spiky” cost function, that makes the problemmore difficult to solve.

3.3. Non-monotonicity of the cost function

It can be easily observed that the problem is non-convex. More importantly, we can show that the
monotonicity of the cost function does not hold.
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Definition 3.3: Amapping F : K ⊆ R
n → R

n is said to be

(a) Pseudo monotone on K if for all vectors x and y in K ,

(x − y)TF(y) ≥ 0 ⇒ (x − y)TF(x) ≥ 0 (26)

(b) Monotone on K if

[F(x) − F(y)]T(x − y) ≥ 0 (27)

The property of monotonicity is important because it closely related to the complexity involved
when solving the correspondingCP/VI problem.We show the violation of this property using the same
twocell networks in Figure 2. Assuming that there is a total of 200unit flow loadedon this networkwith
themaximumdeparture time tobe8. Consider following two scenarioswith a single user groupof user
profileα = 1,β = 0.8, γ = 1.2 and thepreferredarrival time t∗ = 6. Ifμ � 10, then theassociated cost
can be computed as in Table 1.

From the above two scenarios, we see that

(rI − rII)T(C(rI) − C(rII)) = −21.79 < 0

indicating that the monotonicity does not hold. Moreover, even pseudo-monotonicity fails:

(rI − rII)TC(rII) = 5.79 > 0, but(rI − rII)TC(rI) = −16 > 0

This example shows some interesting aspects of the model. For example, in Scenario I, the trip cost in
time steps2and3arehigher than thecost in time step1, evenwhennodeparture flowappears at these
time steps. Also in Scenario II, shifting 10 units of flow to time step 2 decreases the cost of departing at
time step 2. As the amount of flow that departs at step 2 can join the last part of remaining flow that
departs at time step 1, and leave the source cell together at time step 5. We call such a phenomenon
as blocking effect, which is caused by congestion and the use of average travel time to estimate the trip
costs.

As the cell capacity Q is limited, assuming a large amount of flow f is loaded to a cell, then some
proportion of it will be held in the same cell for the next time step and blocking the later arriving flows.
The travel time of departing immediately after f will be higher even when departure rate is low or no
departure flow at this time step, as f fully occupies the cell capacity and later flow has to wait until f is
dissipated. Also, since the average travel time is used, the estimated travel time associatedwith f might
be lower than some proportion of f actually experienced. The blocking effectmeans that the trip costs
can be high evenwhen the departure flow rate is low or 0 at some time step. This phenomenon causes
the cost function lose many nice properties including monotonicity. Higher demand in the network
will cause more severe blocking, which poses greater challenge in solving this problem.

Table 1. Two scenarios in the illustration example.

Scenario I Scenario II

t rt + μ TT et lt Ct rt + μ TT et lt Ct

1 200 3 2 0 4.6 190 2.895 2.105 0 4.579
2 μ 5 0 1 6.2 10+ μ ≈ 4 0 0 ≈ 4
3 μ 4 0 1 5.2 μ 4 0 1 5.2
4 μ 3 0 1 4.2 μ 3 0 1 4.2
5 μ 2 0 1 3.2 μ 2 0 1 3.2
6 μ 1 0 1 2.2 μ 1 0 1 2.2
7 μ 1 0 2 3.4 μ 1 0 2 3.4
8 μ 1 0 3 4.6 μ 1 0 3 4.6
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The non-monotonicity of the cost function prohibits the use of an efficient derivative-free projec-
tion algorithm to solve this problem (Facchinei and Pang 2003b), especially for high demand case. To
solve the problem, we use a modified PPA by solving a series of regularized problems that is better
behaved, and eventually find the equilibrium or near equilibrium solutions. However, we first prove
the solution existence for this formulation in the following section.

4. Solution existence

4.1. Preliminaries

In this section, we convert the problem into a finite-dimensional VI problem and prove the solution
existence. In its general form, a VI is defined as follows.

Definition4.1: Let setK ∈ R
n andamapping F : K → R

n, theVI, denoted asVI(K , F), is to find a vector
x ∈ K such that

(y − x)TF(x) ≥ 0, ∀y ∈ K (28)

The set of solutions to this problem is denoted SOL(K , F).

A useful result for the solution existence of VI(K , F) is given by Facchinei and Pang (2003a,
Corollary 2.2.5).

Lemma 4.2: If the set K ⊆ R
n is compact and convex and let F : K → R

n be continuous. Then the set
SOL(K , F) is nonempty and compact.

The main idea for proving the solution existence is to show that the equivalent VI of the problem
has nonempty solution set. The key step is to show the equivalency between the complementarity
formulation and a VI problem. The proof uses the KKT condition for a VI, which is given as follows.

Proposition 4.3 (Facchinei and Pang 2003a, Proposition 1.3.4): Let K be represented by finitemany
differentiable inequalities and equations:

K ≡ {x ∈ R
n : h(x) = 0, g(x) ≤ 0} (29)

with h : Rn → R
l and g : Rn → R

m being vector-valued continuously differentiable functions. Let F be a
mapping from K intoR

n. The following two statements are valid:

(a) Let x ∈ SOL(K , F). If Abadie’s CQ holds at x, then there exist vectorsμ ∈ R
l and λ ∈ R

m such that

0 = F(x) +
l∑

j=1

μj∇hj(x) +
m∑
i=1

λi∇gi(x)

0 = h(x)

0 ≤ λ⊥g(x) ≤ 0

(30)

(b) Conversely, if each function hj is affine and each function gi is convex, and if (x,μ, λ) satisfies above
conditions, then x solves the VI(K , F).
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4.2. Solution existence

Since the path cost function (denoted as C(r)) is continuous on r, we can write the complementarity
formulation in the following compact form:

0 ≤ rp,g,t⊥Cp,g,t(r) − C∗w
g ≥ 0, ∀p ∈ PW , g ∈ G,w ∈ W , t ∈ T

0 ≤ C∗w
g ⊥

∑
p∈PW

T∑
t=0

rp,g,t − dwg ≥ 0, ∀w ∈ W , g ∈ G
(31)

Also define


 �

⎧⎨
⎩
∑
p∈Pw

T∑
t=1

rp,g,t = dwg , r ≥ 0, ∀g ∈ G

⎫⎬
⎭ (32)

We claim that the CP (31) is equivalent to VI(
,C).

Lemma 4.4: (r∗,C∗) is a solution of Equation (31) if and only if it is a solution of VI(
,C).

Proof: First prove sufficiency. Let (r∗, C∗) be a solution of VI(
, C), we want to show it also solves
Equation (31). Since the feasible region 
 is the solution space of a system of linear equations, thus
Abadie’s CQ is satisfied. Let

hwg (r) =
∑
p∈Pw

T∑
t=1

rp,g,t − dwg , ∀g ∈ G,w ∈ W

gp.g,t(r) = −rp,g,t , ∀p ∈ P, g ∈ G, t ∈ T

Thus 
 = {r : hwg (x) = 0, gp,g,t(x) ≤ 0, ∀w ∈ W , p ∈ P, g ∈ G, t ∈ T}. Note that in the CP problem (31),
separateCp,g,t(r),hwg (r) andgp.g,t(r) aredefined for eachg ∈ G, by theKKT conditionof aVI (Proposition

4.3), there exist μ∗ � (μ∗w
g )w∈W ,g∈G and λ∗ � (λ∗

p,g,t)w∈W ,g∈G, such that

Cp,g,t(r∗) + μ∗w
g − λ∗

p,g,t = 0, ∀w ∈ W , p ∈ P, g ∈ G, t ∈ T

∑
p∈Pw

T∑
t=1

rp,g,t − dwg = 0, ∀g ∈ G,w ∈ W

0 ≤ λ∗
p,g,t⊥rp,g,t ≥ 0

Solving λ∗
p,g,t from the first equation, we have

0 ≤ rp,g,t⊥Cp,g,t(r∗) + μ∗w
g ≥ 0

∑
p∈Pw

T∑
t=1

rp,g,t − dwg = 0, ∀g ∈ G,w ∈ W
(33)

Since Cp,g,t(r∗) ≥ 0, if μ∗w
g > 0, then Cp,g,t(r∗) + μ∗w

g > 0. From the complementarity condition in
Equation (33), we have rp,g,t = 0, hence

∑
p∈Pw

T∑
t=1

rp,g,t = 0 < dwg , ∀g ∈ G,w ∈ W

which is a contradiction. Thus μ∗w
g ≤ 0, let C∗w

g = −μ∗w
g , we see that (r∗, C∗) solves Equation (31).
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Next, we show the necessity. Let (r∗,C∗) be a solution of Equation (31), we first show

∑
p∈Pw

T∑
t=1

rp,g,t − dwg = 0, ∀g ∈ G,w ∈ W

Since
∑

p∈PW
∑T

t=0 rp,g,t − dwg ≥ 0, suppose
∑

p∈Pw
∑T

t=1 rp,g,t > dwg for somew ∈ W , g ∈ G, then from
the second complementarity condition in Equation (31), we have C∗w

g = 0. As rp,g,t > 0 for some p ∈
Pw , g ∈ G, which requires Cp,g,t(r) − C∗w

g = 0, thus Cp,g,t(r) = 0. This is a contradiction, since rp,g,t > 0
requires Cp,g,t(r) > 0. Consequently, following equation holds:

∑
p∈Pw

T∑
t=1

rp,g,t − dwg = 0, ∀g ∈ G,w ∈ W

Now, we show (r∗,C∗) is indeed a solution of VI(
, C). We have already shown that r∗ ∈ 
, and again
let

hwg (r) =
∑
p∈Pw

T∑
t=1

rp,g,t − dwg , ∀g ∈ G,w ∈ W

gp.g,t(r) = −rp,g,t , ∀p ∈ P, g ∈ G, t ∈ T

Notice that hwg (r) is affine and gp,g,t(r) is convex, and hwg (r) = 0 is already proved and gp.g,t(r) ≤ 0
is given, thus by Proposition 4.3(b), (r∗,C∗) is a solution of VI(
, C) if the KKT condition of VI(
,C),
Equation (33) is satisfied.

As we have already showed that the second equation holds, we only need to show the first com-
plementarity condition holds. Note that by replacing C∗w with −μ∗w

g , in the first complementarity
condition of Equation (31), we obtain exactly the same complementarity condition in Equation (33).
Thus, the solution of Equation (31) is a solution of VI(
, C), therefore the necessity condition holds. �

Theorem 4.5: The CP (31) has a solution.

Proof: From Lemma 4.2, the problemVI(
,C) has nonempty solution set if
 is a compact convex set.
Since


 �

⎧⎨
⎩
∑
p∈Pw

T∑
t=1

rp,g,t = dwg , r ≥ 0, ∀g ∈ G

⎫⎬
⎭

which is a system of linear equalities, thus clearly, 
 is closed and convex. Also since

0 ≤ rp,g,t ≤
∑
p∈Pw

T∑
t=1

rp,g,t = dwg

Thus, 
 is bounded. Since 
 is compact and convex, SOL(
, C) is nonempty. As we have proved in
Lemma 3.6, the solution of VI(
,C) also solves Equation (31). Consequently, the CP (31) has nonempty
solution set. �

5. Solution algorithm

Due to the complexity and non-monotonicity of the problem, commercial solvers such as PATH or
KNITRO fail to solve the problem. Thus, a more robust solution approach is needed. Ukkusuri, Han,
and Doan (2012) used the projection algorithmwith variable steps (PAVS) (Facchinei and Pang 2003b,
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Algorithm 12.1.4) to obtain the solution of the equivalent VI for a single user class DUE model with
embedded path-based CTM. An obvious weakness of the projection algorithm, as pointed out in
Facchinei and Pang (2003b), lies in the requirement of strongly monotonicity. This does not hold even
for the single user class model as discussed in Section 3.3. Consequently, the projection algorithm is
not guaranteed to converge to the equilibrium solution. To obtain a convergent solution, Ukkusuri,
Han, and Doan (2012) suggested to shrink the magnitude of the updating scale parameter in PAVS to
force the algorithm return a convergent solution. But there is no concrete criterion given on how to
properly shrink the scale parameter, nor proof provided that the forced convergent algorithm indeed
solves the VI problem.

The major difficulty of solving the equivalent VI problem VI(
, C) lies in the non-differentiability
and non-monotonicity of the cost function C. In this study, a modified PPA is used to find the equilib-
rium or close to equilibrium solution of the problem. The PPA is developed by Rockafellar (1976) and
is one of themost popular methods for solving nonlinear equations, optimization problems as well as
the VI problems. The key idea of PPA is to iteratively solving a series of perturbed sub-problems which
adds a strongly monotone regularization term τ(I − xn). Hence if the original problem is monotone,
then the resulting sub-problems will be strongly monotone and can be easily solved using the con-
ventional projection algorithm. Although the global convergence of PPA requires the monotonicity
of the original problem (Rockafellar 1976; Facchinei and Pang 2003b), several researchers have sug-
gested that the monotonicity might not be needed for local convergence (Eckstein and Ferris 1999;
Pennanen 2002) and successfully applied PPA on solving non-monotone problems with special struc-
tures. Basedon these nice features of PPA,wedevelop amodified versionof PPA to solve themulticlass
traffic assignment problem. The detailed algorithm is presented as follows:

Algorithm 5.1: Modified PPA

Step 0: Set n = 0. Initialize a feasible departure rate r0, let {ρn}∞n=0 and τ > 0 be given.
Step 2: Solve the regularized sub-problem: VI(
, C + τ(I − xn)) using projection algorithm:

Let z0 = rn.
For k = 1 to maximum projection iteration:

Step 2.1: Run simulation CTM(zk−1), compute cost C(zk−1)

Step 2.2: Solve

zk = 
[zk−1 − λ(C(zk−1) + τ(zk−1 − rn)]

Step 2.3 (early exit): For k > 1,
If ‖zk − zk−1‖ > 1.1 · ‖zk−1 − zk−2‖, exit the loop and return z∗ = zk−1. Otherwise, if

k = maximum projection iteration, return z∗ = zk

Step 3: Set

rn+1 � (1 − ρn)rn + ρnz∗

Step 4: Convergence check:
If rn+1 − rn < ε, terminate the algorithm, r∗ = rn+1. Otherwise n = n + 1, go to step 2.

where 
(x) denotes the projection of x onto set 
, mathematically solved as a quadratic program-
ming problem: 
(x) = argminy∈
(1/2)(y − x)T(y − x).

The modified PPA uses the same principle as typical PPA, that iteratively solves regularized sub-
problems VI(
, C + τ(I − xn)). However, to guarantee convergence, PPA usually requires the solution
from the sub-problem has to be exact, or inexact is allowed but the error is bounded within some tol-
erance criteria (Rockafellar 1976), which unfortunately, cannot be satisfied for this problem. Although
by choosing a sufficiently large τ value, it is possible that the sub-problems VI(
, C + τ(I − xn)) will
become monotone, it is not always guaranteed. Consequently, the projection algorithm that used to
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solve the sub-problem may fail to converge. To alleviate such difficulties, we suggest an additional
early exit condition (Step 2.3 in Algorithm 5.1), which stops the projection algorithm in the middle
when we observe a possible divergence occur ((‖zk − zk−1‖ > 1.1 · ‖zk−1 − zk−2‖)). This will allow
us to obtain a relative close solution of VI(
, C + τ(I − xn)) and hence lead to better performance
of the algorithm. The numerical experiments also show that this strategy can greatly speed up the
convergence and produces superior solutions.

In the next section, we present the numerical results obtained using the modified PPA.

6. Numerical experiments

The DUE problem as well as the solution approach are coded and tested in MATLAB. The multiclass
path-based CTMmodule are compiled into C codes to improve the computation efficiency. Extensive
experiments are conducted on three test networks (namely, X-shape, Nguyen–Dupuis and Sioux Falls
network) under different traffic conditions. All the numerical experiments are performed on an Intel
i7 CPU desktop. For detailed set-up of algorithm parameters, we use λ = 0.25, ρn = 1.7 × (n + 1)0.8

and the maximum projection iteration is set to 50 (40 for Sioux Falls network). For the convergence
criteria, we use ε = 0.05 for all tests. For most of the experiments, we consider two user groups: one
group with lower arrival and late penalty (α = 1,β = 0.5, γ = 2) and relatively late preferred arrival
time, which correspond to users with higher travel flexibility; the other group corresponds to users
with higher penalty (α = 1,β = 0.6, γ = 2.5) and relatively early preferred arrival time. In addition, a
test with three user groups is also conducted on X-shape network. Different demand scenarios are
tested. Specifically, we consider both low demand level (low congestion level, total demand = d) and
high demand level (heavily congested, total demand = 2d or 2.5d). As discussed in previous sections,
the conventional projection algorithm fails to solve the equivalent VI problem,while themodified PPA
approach produces reasonably good solutions.

To further investigate the quality of the solution obtained, we introduce following penalty function
to evaluate the relative gap between the current solution and the equilibrium solution:

P(r, C(r)) =
∑
i∈I

[Ci(r) − min (Ci(r))]Tri (34)

in which we partition r and C(r) into a set of groups indexed by a particular user group and OD pair
i. The penalty function is always non-negative and P(r∗,C(r∗)) = 0 only when r∗ ∈ SOL(C,
). The
penalty measures the degree of deviation to the equilibrium solution. As at equilibrium, all flow of
a particular user group and OD pair departs only when the path and time step yields minimum cost
(min (Ci(r))). Hence for nonequilibrium solution, the greater amount of flow that deviates from the
minimum cost paths and departure times, the larger penalty value will be. As the global convergence
criteria of the PPA for the optimal solution cannot be established, we use the penalty function to
evaluate the quality of the obtained solution.

In all experiments, the proposed solution approach successfully finds close to equilibrium solu-
tions. Simultaneous route and departure time choice behaviors are observed in the results. Solutions
are summarized in Table 2 and presented in Figures 5–7. The performance of the algorithm is further
investigated in Section 6.3.

6.1. Test networks and scenarios

The cell representation of the three networks is presented in Figure 4. The summary for the test
networks and scenarios are as follows:

(1) An X-shape network with 10 cells: two origins and two destinations cells. No route choice in this
network. Both two user groups and three user groups are tested. The demand scenarios include
a low demand case (total demand d = 320) and a high demand case (2d = 640).
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Table 2. Results of the numerical experiments.

# Network Groups Total Demand Iterations Running time (s) Penalty

1 X-shape 2 320 176 117.6 49.99
2 X-shape 2 640 42 21.5 120.89
3 X-shape 3 320 311 354.9 11.78
4 Nguyen–Dupuis 2 440 200 1549.3 107.14
5 Nguyen–Dupuis 2 1100 132 625.5 580.18
6 Sioux Falls 2 585 91 1047.4 60.80
7 Sioux Falls 2 1170 66 659.35 270.93

Figure 4. Test networks.

(2) The network of Nguyen and Dupuis (1984) in cell representation, containing 57 cells and 63 links.
There are two origins (cells 1 and 14) and two destinations (cell 48 and 57), constituting 4ODpairs
and 12 paths. The demand scenarios include a low demand case (total demand d = 440) and a
high demand case (2.5d = 1100).

(3) The Sioux Falls network with 114 cells and 142 links. There are six OD pairs 540–550, 551–541,
540–570, 551–570, 571–541, 571–550. A number of paths are predefined for each OD pair,
with two OD pairs (540–550, 551–541) with three paths, two OD pairs with two paths
(540–570, 571–541) and two OD pairs (551–570, 571–550) with one path. The low demand
scenario has a total demand of d = 585 and a high demand scenario has a total demand of
2d = 1170.
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6.2. Numerical results

6.2.1. X-shape network
The solutions for two and three user groups with low demand cases and two user groups with high
demand case on X-shape network are shown in Figure 5. High-quality solutions are obtained for all
testswith very lowpenalty values (Table 2). The three user groupswith lowdemand case evenproduce
a solution with a penalty value of 11.78. Considering the total amount of flow (320) and the minimum
cost (about 7), as well as the possible numerical inaccuracy (largely due to the introduction of back-
ground flow) while running the CTM simulation, the penalty value is very low (at most 1.68 unit of
flow violates the equilibrium condition). The results in Figure 5 show that for all tests, almost exact

Path Cost
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(a) Two user groups, total demand=320

(b) Two user groups, total demand=640

(c) Three user groups, total demand=320
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Figure 5. Solutions of X-shape network.
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equilibrium solutions are obtained in low demand cases, as all flows are departing at lowest cost time
step. In high demand case, majority of the departure flows are found to depart at minimum cost time
step. Slight violation of equilibrium condition is observed, but the general flow pattern is very close
to equilibrium condition. The second user group in both the two- and three-group tests are the users
having higher late arrival penalty and earlier preferred arrival time. This user preference is reflected in
the results, that in all tests, the user group 2 departs earlier than other groups.

6.2.2. Nguyen–Dupuis network
The solutions of Nguyen–Dupuis network tests are presented in Figure 6. Again, majority of the flows
aredepartingat lowest cost time steps, and the costs of usedpaths for the sameusergroupandODpair
are the same. Similar to the results in X-shapenetwork, almost exact equilibriumsolutions are obtained
for low demand case and heterogeneous user travel behaviors are observed. User group 2with higher
early and late arrival penalty and earlier preferred arrival time is found to depart early for both high and
low demand cases. Furthermore, although 12 paths are available in Nguyen–Dupuis network, only 4
paths are utilized for low demand case. If compare the solutions for low and high demand cases, it

(a) Two user groups, total demand=440

(b) Two user groups, total demand=1100
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Figure 6. Solutions of Nguyen–Dupuis network.
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can be observed that with the increase in total demand, more paths are utilized to reduce the path
costs. For example, paths 4, 6, 7, 9 for user group 1 and paths 7, 9 for user group 2 become feasible
paths although they are not used in low demand case. User group 1 utilizedmore paths because it has
higher total demand (600 units flow) than user group 2 (500 units flow). This suggests that the route
choice behavior can be effectively captured in the model.

6.2.3. Sioux falls network
The solutions for Sioux Falls network tests are presented in Figure 8. As the Sioux Falls network ismuch
larger than previous networks and the CTM simulation is costly, we set themaximum projection itera-
tion to be 40. This will potentially decrease the solution precision of the sub-problems of PPA, but will
improve the computation efficiency. Both low and high demand cases yield small penalty values (60.8
and 270.93), which suggest close to equilibrium solutions are obtained.

For the results in Figure 7, most of flows are departing at lowest cost time step, and the solutions
match well with the equilibrium condition especially for the low demand case. It is observed that the

(a) Two user groups, total demand=585

(b) Two user groups, total demand=1170

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-541 Path:10

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-541 Path:11

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-550 Path:12

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-541 Path:10

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-541 Path:11

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-550 Path:12

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:6

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:7

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:8

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-570 Path:9

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:6

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:7

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:8

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-570 Path:9

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-550 Path:3

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-570 Path:4

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-570 Path:5

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-550 Path:3

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-570 Path:4

0

20

40

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-570 Path:5

0

20

40

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-541 Path:10

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-541 Path:11

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:571-550 Path:12

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-541 Path:10

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-541 Path:11

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:571-550 Path:12

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:6

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:7

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-541 Path:8

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:551-570 Path:9

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:6

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:7

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-541 Path:8

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:551-570 Path:9

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-550 Path:1

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-550 Path:2

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-550 Path:3

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-570 Path:4

0

30

60

0 10 20 30 40 50
0

40

80
User Group:1 OD:540-570 Path:5

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-550 Path:1

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-550 Path:2

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-550 Path:3

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-570 Path:4

0

30

60

0 10 20 30 40 50
0

40

80
User Group:2 OD:540-570 Path:5

0

30

60

Path Cost
Departure Rate

Figure 7. Solutions of Sioux Falls network.
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departure rate and the cost patterns are more complex due to more opportunities of flow interaction
in larger network. User group 1 is designed as users with lower early and late arrival penalty andmore
flexible arrival time,who also have a larger share in total demand (330 and 660 units of flow for low and
high demand case) compared with user group 2 (235 and 470 units of flow for low and high demand
case). In the results of both low and high demand tests, travelers of user group 2 tend to depart early.
Furthermore, a comparison between Figure 7(a) and (b) shows that with the increase in demand, trav-
elers of user group 2will depart even earlier to avoidmore severe congestion and arrive on time. This is
a very realistic reflection of travelers’ commuting behavior during peak hours. Route choice behaviors
are also captured, travelers from the same user group and OD pair only select paths and correspond-
ing departure time that have lowest or equal cost. Similar to results in the Nguyen–Dupuis network,
with the increase in demand, more previously high cost paths become feasible paths and utilized by
both user groups.

6.3. Convergence and running time

All test results for different networks and demand scenarios are summarized in Table 2. One poten-
tial drawback of PPA is that it is relatively slow to solve large problems as we are solving a series
of perturbed sub-problems at each iteration. And each sub-problem itself will take a relatively long
time to solve using the projection algorithm when the network is large. In Table 2, solving the
Nguyen–Dupuis network with low demand takes about 25min using 200 iterations. The computation
time can potentially become longer for a larger and more complex network.

It is observed that the results of low demand scenarios typically have higher quality with lower
penalty values, while slight violations of DUE condition are observed for some high demand scenario
tests. This is because that high demand scenarios have more severe congestion, causing more flow
blocking phenomena discussed in Section 3.3. This leads to a higher level of non-monotonicity of the
cost function and makes the problem harder to solve.

The convergence plots of Nguyen–Dupuis network and Sioux Falls network are shown in
Figure 8(a). It can be observed that PPA converges very fast in the first few iterations, but converges
slowly in later iterations. This might due to several reasons. First, as the problem is non-monotone, it
is not guaranteed to find the exact solution of the perturbed sub-VI problem of PPA, which can lead
to potential inefficiencies in converging to the optimal solutions; second, PPA solves a series of per-
turbed problems rather than the original one, hence when the current solution is close to the optimal
solution, the perturbation itself may introduce interferences and slow down the convergence speed.
Figure 8(b) shows the penalty value of Nguyen–Dupuis network and Sioux Falls network tests at each
iteration. It can be observed that PPA indeed improves the quality of the solution (decreasing penalty
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values) as the number of iteration increases even when the problem is non-monotone. In this study,
we only used very loose stopping criteria (ε = 0.05). It can be expected that when using a smaller
threshold value ε, the quality of the solution can be further improved, however, at the cost of longer
computation time.

7. Conclusions

Wedevelopedacomplementarity formulation for amulti-user class, simultaneous route anddeparture
time choice DUE model. Several model properties and the solution existence are proved. Three test
networks: X-shape network, Nguyen–Dupuis network and Sioux Falls network are tested and solved
using a modified PPA. The numerical results show that the solution approach can find equilibrium or
close to equilibrium solutions of the problem. The main contributions of this work include:

• The development of a path-based mCTM for general networks. mCTM can serve as an embedded
network loading model that capturing spatial queuing and other flow propagation properties.

• Proposing a new formulation for multi-user class DUE model, which allows for simultaneous route
and departure time choice behaviors. Comparedwith othermulticlass DTAmodels proposed in the
literature, the newmodel is applicable to general network, and can be effectively solved.

• Amodified PPA is proposed to solve the complex non-monotone equivalent VI problem. The results
show that the proposed algorithm effectively finds equilibrium or close to equilibrium solutions.

Currently, the PPA-based solution approach still suffers from slow convergence and relatively long
computation time for large networks. Future research can be done to utilize more properties of the
multiclass DUE model (e.g. the Cartesian product structure of the feasible region 
) to develop more
efficient and distributed algorithms to solve the proposed DTA problem.
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