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A B S T R A C T

License-plate recognition (LPR) data are emerging data sources in urban transportation systems
which contain rich information. Large-scale LPR systems have seen rapid development in many
parts of the world. However, limited by privacy considerations, LPR data are seldom available to
the research community, which lead to huge research gap in data-driven applications. In this
study, we propose a complete solution using LPR data for link-based traffic state estimation and
prediction for arterial networks. The proposed integrative data-driven framework provides the
inference of both cycle maximum queue length states and average travel times of links using LPR
data from a subset of intersections in an arterial network. The framework contains three novel
data-driven sub-components that are highly customized based on the characteristics of LPR data,
including: a traffic signal timing inference model to find signal timing information from the LPR
timestamp sequences; a light-weighted queue length approximation model to estimate lane-based
cycle maximum queue lengths and a network-wide traffic state inference model to perform
network-level estimation and prediction using partially observed data. This study exploits and
utilizes the unique features of LPR data and other similar vehicle re-identification data for urban
network-wide link-based traffic state estimation and prediction. A six days’ LPR dataset from a
small road network in the city of Langfang in China and a more comprehensive link-level field
experiment dataset are used to validate the model. Numerical results show that the framework
provides good estimation and prediction accuracy. The proposed framework is efficient and
calibration-free, which can be easily implemented in urban networks for various real-time traffic
monitoring and control applications.

1. Introduction

License-plate recognition (LPR) data from high-definition (HD) video cameras are emerging data sources in urban transportation
systems. Because of a wide range of applications, including automatic toll collection, law enforcement, emergency operation and
traffic monitoring, the past few years has seen rapid deployment of large-scale LPR systems in many regions of the world (e.g. China,
Malaysia, Thailand and the Middle East). For example, in 2010, Beijing has an LPR system with 374 HD LPR cameras; in 2017, this
number has increased to 1,958 and covers the whole metropolitan area (Beijing Traffic Management Bureau, 2017). In typical LPR
systems, HD video cameras installed at an intersection detect and take an image of each passing vehicle. Once the image is obtained
from the camera, an image processing algorithm is used to enhance the image and further extract the alphanumerics of the license
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plate. Finally, the recognized license-plate number will be saved into the database of the LPR system. Such LPR systems provide a rich
source of information that enable recording the complete vehicle departing timestamp sequences at intersection level and allow for
tracking the same vehicle at multiple intersections using recognized license-plate, from which the path travel time of the vehicle can
be easily obtained. This provides a new opportunity for estimating and forecasting network-wide arterial traffic conditions. However,
as LPR data contain license-plate information, local transportation agencies typically do not share the data to research communities
due to privacy concerns. This has resulted in very limited research efforts in developing advanced real-time traffic estimation and
forecasting models using LPR data. On the other hand, although large amounts of LPR data are collected every day in many cities,
they are heavily underutilized and only considered for law enforcement purposes by local transportation authorities. Hence there is
significant value in developing advanced data analytics that utilize the valuable information in LPR data.

In literature, there are few studies that used LPR data for traffic applications. Bertini et al. (2005) and Yasin et al. (2010) are
among the first researchers to explore using LPR data for link-level travel time estimation. These works are relatively straightforward,
as link travel times are simply the timestamp differences from vehicles with matched license-plate numbers between upstream and
downstream intersections. Several recent studies developed more advanced models for various traffic estimation problems using LPR
data, such as estimate real-time lane-based queue lengths (Zhan et al., 2015) and estimate the speed profile of vehicles passing a road
segment (Mo et al., 2017). These works are again restricted to link-level and need to collect field data for model calibration. Chen
et al. (2017) analyzed city-level travel behavior by clustering a large-scale LPR dataset from Shenzhen, China. However, as the data
were collected from highway and parking lots, it was only used for conducting traffic pattern analysis.

Traffic state estimation and prediction for arterial networks are central to many applications in traffic operations and manage-
ment. Two widely used urban link-based traffic state measures are short-term link travel times and queue lengths. Traditional
approaches for short-term urban link travel time estimation and prediction have largely rely on data from various road-based sensors,
such as loop detectors (Coifman and Cassidy, 2002; Zhang and Rice, 2003; Wu et al., 2004), automated vehicle identification (AVI)
sensors (Park and Rilett, 1998; Li and Rose, 2011; Sherali et al., 2006) and Remote Traffic Microwave Sensors (RTMS) (Yeon et al.,
2008). Similar data sources were also used in estimating queue lengths at signalized intersections, such as real-time queue length
estimation using loop detector data (Sharma et al., 2007; Vigos et al., 2008; Skabardonis and Geroliminis, 2008) and event-based
signal and vehicle detection data (Liu et al., 2009). These approaches require installing corresponding fixed sensors, which limit their
use only to major road segments or small arterial networks. With the recent advances of pervasive computing technologies, data from
mobile sensors such as GPS probe vehicles and mobile phones have become another promising data source for urban traffic mon-
itoring. For example, many recent studies focused on estimating link travel times using detailed GPS trajectory information from
probe vehicle data (Herrera et al., 2010; Herring et al., 2010; Hofleitner et al., 2012; Xumei et al., 2012; Zheng and VanZuylen, 2013;
Wang et al., 2014; Tseng et al., 2018). A few studies also explored using sparser trajectories or path-level GPS information to estimate
link travel times (Hunter et al., 2009; Zhan et al., 2013; Zhan et al., 2016). Moreover, Ban et al. (2011) examined the possibility of
using GPS probe vehicle data to estimate real-time queue lengths at signalized intersections. The greatest strength of data from
mobile sensors over traditional road-based sensor data is that it enables continuous monitoring urban traffic network with large
coverage areas without the need of installing any fixed sensors.

Compared with the aforementioned conventional and emerging traffic data sources, LPR data offer several advantages in network-
wide link-based traffic state estimation and prediction. First, LPR data do not suffer from the issue of low penetration rate that often
occurs in applications using GPS probe vehicle data (Ban et al., 2011; Hofleitner et al., 2012; Zhan et al., 2017). LPR data records
almost all the passing vehicles at an intersection, whereas the GPS probe vehicle data only covers a small fraction of vehicles in the
traffic. Despite the previous advantage, the greatest strength of LPR data lies in the rich and unique information provided. From LPR
data, we can simultaneously obtain three levels of information on traffic condition. At the intersection level, the LPR data record the
departing timestamps from each lane at the intersection. In this case, LPR cameras work similar to road-based sensors (e.g. loop
detector). Similar to studies that use road-based sensor data, the traffic dynamics at the end of the link (e.g. queuing) can be estimated
by performing shockwave analysis (Skabardonis and Geroliminis, 2008; Liu et al., 2009). At the link level, if both the upstream and
downstream intersections are equipped with LPR cameras, the actual link travel times can be easily obtained through matching the
identical license-plate numbers. Although there exist other vehicle re-identification techniques for link travel times estimation, such
as using dual loop detectors (Coifman and Cassidy, 2002; Coifman and Krishnamurthy, 2007) and vehicle magnetic signatures (Oh
et al., 2007; Kwong et al., 2009; Jeng et al., 2010), their vehicle re-identification accuracy is much lower compared with LPR data-
based approaches, thus often lead to inferior travel time estimation results. This is because that the re-identification of a vehicle using
LPR data is based on unique license plate information, while the other techniques rely on less precise vehicle identifiers, such as
vehicle lengths (dual loop detectors approach) and magnetic signals (vehicle signature approach). Finally, at the path level, the LPR
data can be used to track the same vehicle at multiple intersections in a network and reveal path travel time information. In that
sense, LPR data can also be treated as a path-based data, which is particularly useful in performing network-wide traffic condition
estimation when the LPR cameras are only sparsely located in the road network (Zhan et al., 2013; Zhan et al., 2016). Due to the high
installation and maintenance cost, most cities usually only install LPR cameras at intersections connecting important roads. This often
leads to a partially monitored network, which poses great challenges for network-level applications using the LPR data. To perform
accurate network-wide traffic state estimation and prediction, all the three levels of information in the LPR data need to be fully
utilized.

This study proposes an integrative statistical modeling framework to estimate the real-time traffic states of cycle maximum queue
length (maximum number of queuing vehicles in a signal cycle) as well as the average travel time for each link in the urban arterial
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networks using LPR data from a subset of intersections. The framework contains three components: a signal timing inference model
that finds the signal timing information from the LPR timestamp sequences; a light-weighted queue length approximation model that
efficiently estimate the lane-based cycle maximum queue lengths; and finally, a network-wide traffic state inference component
modeled as a dynamic linear-Gaussian (DLG) model to perform inferences on average cycle-maximum queue lengths and average link
travel times for unobserved links. This paper is the first study in the literature that exploits and utilizes the unique features of LPR
data for urban network-wide traffic state estimation and prediction, which enables full utilization of the existing LPR systems in
urban areas. The proposed statistical modeling framework combines both well-established traffic flow theory and highly customized
statistical machine learning techniques to provide robust inferences. We obtain two datasets to fully test and validate the proposed
framework. The first dataset is a six-day network-level LPR datasets from 11 intersections from the city of Langfang, China. We also
used a smaller but more comprehensive link-level dataset obtained in a field experiment to further validate the signal timing in-
ference model and the queue length approximation model. The numerical results show that the framework achieves good estimation
and prediction accuracies.

It should be noted that although the proposed integrative framework focuses on the LPR data, it is also widely applicable to other
types of vehicle re-identification data that share similar characteristics with LPR data. One typical example is the data from urban
vehicle tracking systems using radio frequency identification (RFID) technology. Similar to the LPR systems, the RFID vehicle
tracking systems place RFID tags in vehicles and install sensors on road segments to record the “virtual license-plate” (RFID tags) as
well as timestamps of each passing vehicle at monitored locations. The RFID data contain the same types of information as LPR data
and demonstrate huge potential for city-wide vehicle monitoring. Currently, a metropolitan-scale RFID vehicle tracking system is
already under deployment throughout the city of Shanghai, China (Zhu et al., 2009). It is expected that in the near future, RFID tags
will be installed in every vehicle in China (He and Das, 2015). The proposed framework is efficient and calibration-free, which can be
easily implemented in urban arterial networks with reasonable LPR camera or RFID sensor coverage for real-time traffic monitoring
and control applications.

The paper is organized as follows: the next section presents the overall framework; Section 3–5 describe the detailed meth-
odologies for the three core components of the framework, namely, traffic signal timing inference, queue length approximation and
network-wide traffic state inference; Section 6 evaluates the performance of our methods; the final section concludes the paper.

2. Overview

2.1. Problem definition

Given an urban arterial network and LPR data = =D I ID t dir ln n N{( , , , , ), 1, , }n
n
d n n observed from a subset of intersections

equipped with LPR cameras, with the information of vehicle n with license-plate number IDn departing from intersection I at time tn
d

using lane lnn and taking the movement direction dirn, we want to infer the average cycle maximum queue lengths across different
lanes of the link ( = q q q mq ( , , , ) ,T T T

m
T T

1 2 is the total number of links), as well as the average travel time =y y y y( ( , , , ) )T T T
m
T T

1 2 for
each link in the network during time slice T. A specific direction of an intersection is called observed if it is monitored by an LPR
camera and the data is obtainable; otherwise, it is referred to as unobserved. Due to the existence of unobserved intersections, the
input data of the network-wide link-based traffic state estimation and prediction problem are the vehicle departing timestamp
sequences of each lane from the observed intersections =x x x( ( , , ) )T T T T

1 2 , average link travel times for links with both observed
upstream and downstream intersections and average path travel times ( =z z{ }T

p
T ) between two observed intersections from license-

plate matched vehicles, where zp
T denotes the average path travel time for path p in time slice T. In this problem, we only consider the

path travel times involving at most two links, which makes the path of a vehicle easily resolvable based on the network topology. This
avoids extra modeling complexity caused by solving the underlying path inference problem.

2.2. Overall framework

Before introducing the details of the proposed framework, we first classify all the links in the network into three types:
Type 1: both upstream and downstream intersections are observed. For this type of links, the actual link travel times can be

directly obtained from the differences of departing timestamps between upstream and downstream intersections of license-plate
matched vehicles. Furthermore, based on the departure information from the downstream intersection, the cycle maximum queue
length can be approximated using shockwave analysis and a Gaussian process model, which will be described in the following
section.

Type 2: only downstream intersections are observed. For this type of links, the average link travel times are not observed.
However, similar to Type 1 links, we can still approximate the cycle maximum queue lengths using data solely from the downstream
intersection.

Type 3: downstream intersections are not observed. For this type of links, both the queue lengths and average link travel times are
not observed and need to be inferred. To incorporate more information, the travel times from a set of observed paths (the start and
the end intersections of the path are observed) that contain the link are used as input variables.

Fig. 1 presents the overall framework of this paper, which contains three main components: traffic signal timing inference, cycle
maximum queue length approximation and a network-wide traffic state inference model based on the dynamic linear-Gaussian
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model. The network-wide average cycle maximum queue lengths and average link travel times of each time slice are inferred in
following steps. The actual travel times for Type 1 links as well as a set of predefined paths are extracted from LPR data by matching
the license plate numbers at the upstream and downstream intersections. For other unknown traffic state measures, we first use a
signal timing inference model constructed as a weighted soft margin maximization problem to obtain signal cycle and phase lengths
for observed intersections. Such information is required for the queue length approximation model. We propose a highly efficient
Gaussian process model to approximate the lane-based cycle maximum queue lengths at the downstream intersections of both Type 1
and 2 links. The approximated cycle maximum queue lengths, average link travel times of Type 1 links and average travel times of
observed paths are all used as observed data for the final network-wide traffic state inference model. In the last step, the average cycle
maximum queue lengths for Type 3 links as well as the average travel times for Type 2 and Type 3 links are inferred using a partially
observed DLG model.

3. Traffic signal timing inference

We first introduce the signal timing inference component of the framework, which infers the lane-level signal timing information
(length for signal cycle, green and red phases) when real-time signal timing information is obtainable. Many real-world LPR systems
are not integrated with the traffic signal control systems. Hence extracting real-time signal timing information for LPR data-based
applications sometimes can be problematic, especially for signalized road networks implementing adaptive signal control strategies.

Signal timing inference has been investigated in several studies. Early works estimate signal timing using sample travel time data
(Hao et al., 2012). More recent studies (Fayazi et al., 2014; Axer and Friedrich, 2017; Du et al., 2019) used probe vehicle trajectories
for signal timing estimation. The general methodology in these studies can be summarized as three steps: 1) perform map-matching
on trajectory points; 2) infer intersection stop line passing time; and 3) estimating signal phase lengths using data filters or perform

Fig. 1. Overall framework.

Fig. 2. Real-world cases in signal timing inference. The solid green and red lines represent the actual lengths of green and red phases. The green dots
are the departing timestamps of vehicles leaving the lane (within the green phase), and the red dots are the departing timestamps from the
orthogonal direction (red phase of the lane). OG

T and OR
T are empirically observed longest green and red phase intervals in LPR data, which are very

different from the actual green and red phase. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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statistical analysis on collected time intervals. As LPR data directly record the passing timestamps of vehicles at the intersection, this
removes the need to perform map-matching or stop line passing time inference that are necessary in trajectory-based signal timing
estimation methods. Moreover, LPR system records data of every passing vehicle at a intersection, which provides much richer
information compared with sparse trajectories of probe vehicles. Based on these special features of LPR data, we develop a new
approach that extends the well-known support vector machine (SVM) to infer signal timing information for each lane. SVM is a
widely used machine learning method, that has been widely used transportation domain, such as transportation mode recognition
(Jahangiri and Rakha, 2015; Shafique and Hato, 2015), crash severity analysis (Ni et al., 2016; Ahmadi et al., 2018), and traffic
volume or travel time forecasting (Zhang and Xie, 2007; Tseng et al., 2018; Xumei et al., 2012). Unlike using SVM for classification or
regression tasks in previous works, we focus on solving the soft margin maximization problem (the optimization problem solved in
SVM) and extract the learned decision boundary parameter to separate different signal phases.

We start by presenting four typical cases exist in LPR data (Fig. 2). For simplicity, we combine the yellow phase into the green
phase. In normal situations, we observe that all the departing timestamps of vehicles lie strictly within the green and red phases (Case
1). However, it is also observed that the departing timestamps may appear in the wrong phase (e.g. green dots in red phase and red
dots in green phase, illustrated in Case 2, 3 and 4). There are two reasons for these violations. First, such violations may correspond to
vehicles that running the red light. Second, it can result from inaccurate identification of departure vehicle. In typical LPR systems, a
virtual detection zone is set before the stop line of each lane, which has the size equal or smaller to the area occupied by a vehicle.
The LPR camera will recognize a vehicle only when a vehicle passes the virtual detection zone. In certain conditions, when a vehicle
is still waiting for the green light but moves a small distance inside the virtual detection zone, an LPR record with problematic
departing timestamps will be generated. These violations result in overlapping data around the actual phase change time and forbid
the use of naïve data partitioning methods for phase length estimation.

To accurately infer the signal phase lengths, we cast the signal timing inference problem as a weighted soft margin maximization
(WSMM) problem. Denote x x, ,1 2 as the observed vehicle departing timestamps in a signal cycle (xi are normalized such that the
earliest observation has =x 0); t t, ,1 2 are the associated labels, which is 1 if it belongs to the first phase or + 1 for second phase;
and b is the phase change time, which serves as the decision boundary to partition the data. Let =g x v t w x b( ) ( ) ( )i i i be a decision
function that satisfy following conditions:

• =g b( ) 0.
• If g x( ) 1i , then the observation xi has label =t 1i .
• If g x( ) 1i , then the observation xi has label =t 1i .
• If g x1 ( ) 1i , then the observation xi can have label of either 1 or 1.

The value v t x b| ( )( )|i i measures the weighted distance between each observation and the decision boundary b. w in the ex-
pression of g x( )i is a parameter to properly scale the weighted distance. The weighted distance v t x b| ( )( )| at some location x scaled
by w such that =g x( ) 1 or =g x( ) 1 is called weighted soft margins (Wu and Srihari, 2004) (illustrated in Fig. 3). v t( )i is a weight
mapping from the observation label ( =t 1/1i ) to a specific set of positive weight values ( = =v v( 1) 0.5, (1) 1 in actual im-
plementation), which controls the relative size of the margin. As the scaled weighted soft margin sizes are the same
( =v t w x b| ( ) ( )| 1) for both green and red phase observations, smaller weight will lead to a larger distance ( x b| |) to the phase
change time b. The introduction of the weight function v t( ) is due to the fact that compared with the last observation in a phase, the
first observation in a phase is more likely to be a vehicle immediately discharged from the queue as the signal light turns green, hence
is often closer to the actual phase change time. As a result, it is desired to have smaller margin size for observations after the decision
boundary.

Our task is to find the optimal decision boundary b such that the weighted soft margin is maximized (best separation of the two
classes of observations). We extend the equivalent formulation for WSMM proposed by Wu and Srihari (2004) and develop a cus-
tomized formulation (referred to as CWSMM) by introducing an additional temporal smoothing term ( b b( )c 1 2) as follows:

Fig. 3. Illustration of the weighted soft margin maximization approach for signal timing inference.
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where >( 0)i i are slack variables for each observation,M is a positive penalty term that controls the trade-off between the penalties
of the slack variables and the margin size, is a positive regularization term and bc 1 is the decision boundary of the corresponding
phase length inferred from the previous signal cycle. For each signal cycle, we run CWSMM twice (each time we move forward one
signal phase) to obtain both the green and red phase lengths, and use these values for the inference in the next signal cycle. The
original WSMM problem do not have the temporal smoothing term ( b b( )c 1 2), which can be viewed as a special 1-D reduced form
of the weighted support vector machine (WSVM) method (Suykens and Vandewalle, 1999). As most real-world signalized inter-
sections adopt fixed timing plans (the timing plan changes every few hours), the consecutive signal cycles often have identical or
similar timing plans. To incorporate this feature, the temporal smoothing term ( b b( )c 1 2) is added to penalize the difference
between the estimated phase length in the current and previous signal cycle. Both CWSMM and WSMM (without b b( )c 1 2) are
simple 1-dimensional nonlinear optimization problems, which can be efficiently solved by a wide-range of optimization algorithms.
Numerical results show that the CWSMM is much more robust than WSMM and SVM (without b b( )c 1 2 and weighted margin),
especially when the observational data are sparse in a signal cycle. Detailed results please refer to the Section 6.

4. Cycle maximum queue length approximation

4.1. A light-weighted Gaussian process model

To fully utilize the vehicle departing timestamp information in LPR data, we develop a light-weight lane-based Gaussian process
cycle maximum queue length approximation model. Suppose ( ) ( ) ( )x x x, , , , , ,n n1 1 2 2 c c are the cumulative indices and the time-
stamps for all vehicles departing at the downstream intersection of a lane within signal cycle c (total number of vehicles is nc), which
form the cycle cumulative departure curve. Under constant vehicle arrival rate, the cumulative departure curve can be considered as
the result of the combination of two departure processes with constant mean departure rates: (1) saturation discharging flow with
departure rate rs, which occurs when signal light turns green ( =t TR) until the queue is fully dissipated ( = +t T ,R is the queue
clearance time); (2) normal departure flow with departure rate rn ( <r rn s), which occurs after = +t TR until the signal cycle ends
( =t TC). Fig. 4 provides an illustration of this departure process decomposition. From simple shockwave analysis, it can be observed
that traffic under undersaturated regime ( < TG), the cycle maximum queue length qmax can be approximated as the total number of
vehicles discharged between +T T[ , ]R R ; while under oversaturated regime ( TG), q nmax c.

Consequently, the key to approximate the lane-based cycle maximum queue lengths is to find a set of departure process para-
meters = r r{ , , }s n , which characterizes the most realistic decomposition of the vehicle departure process at the downstream

Fig. 4. Illustration of cycle maximum queue length approximation. (a) Space–time diagram of vehicle trajectories with uniform arrivals; and (b)
mean cumulative departure process µ t( | )D at downstream intersection.
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intersection. To achieve this goal, we develop a non-parametric approach to find the most likely cumulative departure curve given the
timestamp information provided in the LPR data using a Gaussian process model. Gaussian process is a powerful method in Bayesian
statistical modeling and machine learning. In general, a Gaussian process is defined as a probability distribution over functions xy ( )
such that the set of values of xy ( ) evaluated at an arbitrary set of points x x x, , , N1 2 jointly have a Gaussian distribution. It defines a
prior probability distribution over function directly and works with a distribution over the uncountable infinite space of functions
(Bishop, 2006; Roberts et al., 2013). Gaussian process serves as an ideal tool in our problem, since we are predicting the most likely
function (cumulative departure curve) rather than specific values. For more background information on Gaussian process, please
refer to (Bishop, 2006; Williams and Rasmussen, 2006; Roberts et al., 2013).

Denote µ t( | )D as the mean cumulative departure process for a lane of a link at the downstream intersection during a signal cycle,
then it can be characterized by a piecewise linear function with parameter = r r{ , , }s n (see Fig. 4(b)):

= < < +
+ + < <

µ t
t T

r t T T t T
r r t T T t T

( | )
0 0

( )
( )

D

R

s R R R

s n R R c (2)

The cumulative departure curve given the observed departing timestamps at an intersection can hence be modeled as

= +x µ x( | ) ( | )D (3)

where N diag0~ ( , (1, , 1)) is a Gaussian distributed disturbance term and is a scale parameter. The function x( | )) can thus be
viewed as the cumulative departure vehicle indices ’s drawn at timestamps x from a multivariate Gaussian distribution controlled by
parameter and ,

=x µ x K x xp N( | ) ( ( | ), ( , | ))D (4)

which is a Gaussian process with the covariance matrix defined as:

=K x x
k x x k x x

k x x k x x
( , )

( , ) ( , )

( , ) ( , )

n

n n n

1 1 1

1

c

c c c (5)

where k (·) is the kernel function to measure the covariance between any pair of departure timestamps on the cumulative departure
curve. In this study, we adopt the most widely used squared exponential function with the regulation term as the kernel function:

= +k x x h exp x x x x( , ) ( , )n m
n m

n m0
2

2

(6)

= =x x x x( , ) 1 if
0 otherwisen m

n m
(7)

where is the lengthscale, which controls the smoothness of the kernel function; h0 is the amplitude, which is a scaling factor
determines variation of kernel function value from their means.

The departure process parameters = r r{ , , }s n that parameterizes the most likely cumulative departure curve given the in-
formation from the vehicle departing timestamps can be learned by maximizing the joint probability distribution xp ( | ). Once the
queue clearing time is inferred, the cycle maximum queue length can be approximated as follows:

= + > + < <
= <

+q i x T x T T n T r
n T n T r
: , if and /

if or /max
i R i R G c G threshold

c G c G threshold

1

(8)

where n T/c G represents the average departure rate observed from the data, and rthreshold is a departure rate threshold introduced to
identify overly large average departure rate. This case often occurs under over-saturation condition (queue cannot fully discharge
within a signal cycle) and the departure process only contains saturation discharging flow ( = TG). Under the undersaturated traffic
condition, the maximum queue length can be simply estimated as the number of vehicles discharged during the queue clearing time .
However, it should be noted that the proposed queue length approximation model can only estimate a lower bound of the maximum
queue length under over-saturation traffic condition (second condition of Eq. (8)). This is because in over-saturation condition, the
actual maximum queue length is greater than the number of departing vehicles, and the departure process cannot be decomposed into
saturation discharging flow and normal departure flow.

4.2. Parameter estimation via MCMC

Inferring requires to perform maximum likelihood estimation on the joint probability distribution xp ( | ) (Eq. (4)). However,
direct maximization of xp ( | ) is analytically complex given the non-differentiable piecewise linear mean cumulative departure
process µ t( | )D . In this study, we developed a Metropolis–Hastings (M-H) algorithm to efficiently infer using Markov Chain Monte
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Carlo (MCMC) technique. M-H algorithm is a widely used sampling method, which is useful in estimating parameters from complex
probability distributions. More detailed information about M-H algorithm and MCMC technique, please refer to (Bishop, 2006;
Berger, 2013). The developed M-H algorithm for learning parameters is given in Algorithm 1.

Algorithm 1. H-M algorithm for sampling parameters.

Step 1: Initialize (0)

Step 2: Sample from following distributions: U T r U n r U r~ [0, ], ~ [0, / ], ~ [0, ]G s c n s , where U a b[ , ] is uniform distribution on interval a b[ , ].
Step 3: Compute and accept as k( ) according to following ratio:

= x xr p pmin( ( | )/ ( | ), 1)k( 1)

Step 4: Repeat step 2–3 for a given number of iterations until k( ) are stable.
Step 5: Discard the first 75% of accepted samples as burn-in, and use the mean of the remaining sampled values as the estimated parameter for .

5. Network-wide traffic state inference

5.1. Model description

The core component of our framework is the network-wide link traffic state inference model, which is modeled using a dynamic
linear-Gaussian (DLG) model. DLG model is a special class of Dynamic Bayesian Network (DBN) which models the variables using
Gaussian distribution and assumes linearity of interaction between variables. In a linear-Gaussian model, the conditional probability
distribution between a node y and its parents x is modeled as linear Gaussians ( = +x x xP y N( | ) ( , ),T

0
2 are the parents of node y)

(Roweis and Ghahramani, 1999). The greatest advantage of the linear-Gaussian model over other Bayesian network models lies in its
nice analytical property due to the use of Gaussian distribution and fewer model parameters needed, which enables efficient inference
in the network. This is very important in modeling large system involving many variables, as using large Bayesian networks involving
discrete variables often requires prohibitive amount of computation time to run probabilistic inference, which are impractical to be
used in real-world applications. Like other Bayesian network models, linear-Gaussian model is capable of modeling unobserved
variables, combined with the DBN framework to capture the temporal dependency, DLG model is an ideal approach for the network-
wide link traffic state inference problem proposed in this study. For more background of DBN and linear-Gaussian model, please refer
to (Ghahramani, 1998; Roweis and Ghahramani, 1999; Murphy, 2002; Koller and Friedman, 2009).

Fig. 5. Graphical illustration of the dynamic linear-Gaussian model for network-wide traffic state inference.
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The representation of the DLG model for this problem is illustrated in Fig. 5. The shaded nodes represent the observed variables
and blank nodes represent unobserved (hidden) variables to be inferred. Moreover, for Type 1 links, both the average cycle maximum
queue lengths (ql

T) and the average link travel times (yl
T) are observed; for Type 2 links, only average cycle maximum queue lengths

are observed and the average link travel times are hidden; for Type 3 links, both queue lengths and average link travel times are
hidden, which need to be inferred. The forward arrows in Fig. 5 represent the conditional dependencies between the parent node and
the child node. The average cycle maximum queue lengths ql

T of link l in time slice T is assumed to be temporally and spatially
conditional dependent on itself ql

T 1 and upstream links q j l, ( )j
T 1 ( l( ) denote the set of upstream links for link l) in time slice

T 1. The average link travel time yl
T of link l is assumed to be only conditionally dependent on average cycle maximum queue

length in the same time slice T. Finally, the path travel times zT are assumed to be jointly dependent on average travel times of all
links yT .

The average link-level cycle maximum queue length ql
T for Type 1 and Type 2 links used in the DLG model are obtained by

averaging the lane-level queue length estimates (obtained using the queue length approximation model). The lane-level queue length
estimate qc ln

max
, for signal cycle c and lane ln are averaged based on the number of vehicles recorded on the lanes (Nc ln, ) of the road Llane

and the signal cycles within the time slice T, computed as:

=
×

q
q N

Nl
T ln L c T

c ln
max

c ln

ln L c T
c ln

, ,

,

lane

lane (9)

To fully specify the proposed DLG model, we define the transition model P q q( | )T T( 1) and the observation model yP q( | )T T and
z yP ( | )T T as follows.
The transition probability for the average cycle maximum queue length ql

T of link l transitioning from time slice T 1 to T is
modeled to be temporally and spatially conditional dependent on itself ql

T 1 and upstream links q j l, ( )j
T 1 in time slice T 1,

which is

= = + +P q P q q q j l N µ q qq( | ) ( | , , ( )) ( , )l
T T

l
T

l
T

j
T

l
q

ll
q

l
T

j l
lj
q

j
T

l
q1 1 1 1

( )

1 2

(10)

where µ , , ,l
q

ll
q

ij
q

l
q2 are parameter to be learned.

For observation model, given the average cycle maximum queue lengths =q ql
T for link l, its average link travel time is modeled

as,

= = + +P y q q N y L
v

µ q( | ) | , ( )l
T

l
T

l
T l

l
f l

y
l
y

l
y 2

(11)

where L v/l l
f represents the free-flow travel time for link l, with Ll denotes the link length and vl

f is the free-flow speed. +µ ql
y

l
y and

l
y are the mean and standard deviation of delay time for link l caused by average queue length q, and µ , ,l

y
l
y

l
y are the learnable

parameters. This treatment follows the idea of the well-known point-queue model (Vickrey, 1969) in transportation network mod-
eling literature, that the link travel times can be modeled as the sum of the free-flow travel time and the delay time caused by queuing
time proportional to the link queue length.

The path travel times zT are modeled as the summation of average link travel times along the observed paths, hence can be
conveniently modeled as a linear-Gaussian model, which is

=z y z AyP N( | ) ( | , )T T T T
P (12)

=A j i1 iflink onthepathobservation
0 otherwiseij (13)

To reduce the number of parameters to be estimated and enable faster inference, the covariance matrix P is modeled as a diagonal
matrix, which is = diag ( , , , )P P P P

2 2 2
np1 2 , where np is the number of paths modeled.

Finally, the joint probability for the sequence of states and observations is given as:

=
=

y z y z y y z yP P P P P P Pq q q q q q( , , ) ( ) ( | ) ( | ) ( | ) ( | ) ( | )T T T

k

T
k k k k k k1 1 1 1 1

2

1

(14)

5.2. Exact inference

The central task we wish to solve using the DLG model is the probabilistic inference. For example, given the DLG model defined by
parameters (µ µ l k, , , , , , , ,l

q
l
y

l k
q

l
y

l
q

l
y

P, ) and the observed data D as evidence, we want to obtain the most likely posterior
probability explanation of the random variables based on the evidence information. Efficient inference plays a central role when
using the DLG model for the traffic state estimation (estimate certain unknown links’ state at current time slice) and prediction
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(predict all unknown links’ states at future time slice) tasks. Both of these two tasks can be achieved by obtaining the posterior
marginal distributions of the variables given the data sample D:

=

=

=

=

y z y z

y z y z

P q D P D P P D

P y D P D P P D

q q

q q

( | ) · · ( | , , ) ( , , ) / ( )

( | ) · · ( | , , ) ( , , ) / ( )

l
T

k

NT

q q l y l z p

k k k k k k

l
T

k

NT

q l y y l z p

k k k k k k

1 , , ,

1 , , ,

l
k

l
T

l
k pk

l
k

l
k

l
T pk (15)

To perform the exact inference on the proposed DLG model, we unrolling the DLG model for NT slices (where NT is the length of the
modeled time slices) and apply an exact inference algorithm for the static linear-Gaussian model (LGM). LGM is known efficiently
solvable using junction tree algorithm (Huang and Darwiche, 1994; Cowell et al., 2006). For details about the junction tree algorithm,
the readers are referred to (Huang and Darwiche, 1994; Cowell et al., 2006; Koller and Friedman, 2009). To enforce the behavior of
the DBN, the parameters of µ µ l k, , , , , , , ,l

q
l
y

l k
q

l
y

l
q

l
y

P, for each link l and path p are shared across different time slices.
Moreover, the parameters for the average cycle maximum queue lengths of the first time slice = = =µ l, , ,l

q T
l k
q T

l
q T, 1

,
, 1 , 1 are allowed to

take different values compared with = = = = = =µ µ, , , , , ,l
q T

l k
q T

l
q T

l
q T NT

l k
q T NT

l
q T NT, 2

,
, 2 , 2 ,

,
, , from other time slices. This is because

= = =µ l, , ,l
q T

l k
q T

l
q T, 1

,
, 1 , 1 does not depend on any parent nodes and should capture prior information of the queue length states. We

implement the junction tree algorithm on the proposed DLG model using the Bayes Net Toolbox developed by Murphy et al. (2001).

5.3. Parameter learning

The proposed DLG model is a large-scale graphical model involving many hidden variables. We use the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977) to learn the parameter values of the DLG model (µ µ l k, , , , , , , ,l

q
l
y

l k
q

l
y

l
q

l
y

P, ). EM
algorithm is a powerful tool for finding maximum likelihood solution for models involving hidden variables. It is proved to converge
to a local maximum of the observed data likelihood function (Dempster et al., 1977). The core idea of EM algorithm is that at each
step, we first “fill in” the missing variable values with their expected values (E-step), then use the resulting complete data likelihood
function to compute their expected sufficient statistics (ESS) and perform maximum likelihood estimation (MLE) (M-step). An outline
of the EM algorithm used in this paper is presented in Algorithm 2.

Algorithm 2. EM algorithm for learning parameters of the DLG model

Step 1: Randomly initialize parameter values of the DLG: µ µ l k, , , , , , , ,l
q

l
y

l k
q

l
y

l
q

l
y

P, .
Step 2: Repeat
1. Reset the ESS for each variable and the log-likelihood =L 0.
2. (E-Step:) For each training case e:
(a) Update the log-likelihood: = +L L logP µ µ l ke( | , , , , , , , , )l

q
l
y

l k
q

l
y

l
q

l
y

P, .
(b) Compute the posterior marginal distributions over each variable given the evidence e.
(c) Update the ESS for each variable.

Fig. 6. Study region.
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3. (M-Step:) Compute the MLE of the parameters for each variable given the ESS.
Step 3: Terminate if L converges.

Step 2.2(a) and (b) in Algorithm 2 are the core steps of the E-step, which can be computed using the junction tree inference
algorithm discussed in the previous section. The detailed forms, update methods and the maximum likelihood estimation of the ESS
for the three different types of variables in the proposed DLG model can be found in Murphy (1998). The technique of learning with
shared parameters in DBN using the aggregate sufficient statistics can be found in Koller and Friedman (2009). To remove re-
dundancy, these details will not be included in the paper. More information on EM algorithm and parameter learning in hybrid
networks please refer to Murphy (1998) and Koller and Friedman (2009).

6. Experiment results

6.1. Experiment setup

To fully test and validate the proposed statistical modeling framework, we obtain two different datasets from the city of Langfang,
China. The main dataset is a six-day network-level LPR dataset (2013/11/11–12, 11/14–17) from a small network in the city (see
Fig. 6). The test network contains 12 signalized intersections and 32 links. 11 intersections are equipped with LPR cameras. However,

Fig. 7. Testing network.

Table 1
Modeled paths of the DLG model.

Path ID Links Path ID Links Path ID Links

1 10, 12 4 14, 23 7 10, 19
2 11, 9 5 15, 26 8 20, 9
3 14, 6 6 17, 25 9 20, 12
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not all intersections are fully monitored. There are 6 intersections have unmonitored approaches, which are represented as the black
sectors in Fig. 7. Some of these intersections do not have LPR cameras installed on certain approaches, as the roads of these ap-
proaches are not very important. More unmonitored approaches are caused by the failure of LPR cameras. This results in a partially
observed arterial network with 19 fully observed (Type 1) links, 7 partially observed (Type 2) links and 6 unobserved (Type 3) links.
A detailed illustration of the testing network with directional observability is presented in Fig. 7. This dataset is used to test and
validate the proposed network-wide traffic state inference model. Due to the missing of ground truth information from other data
sources, we focus on validating the average travel times inferred from the model against the actual average travel times that directly
observed in the LPR data.

We also obtain a more detailed link-level LPR dataset from a field experiment conducted in a previous work of the authors (Zhan
et al., 2015). The field experiment was conducted on a 720 m arterial segment (Link 4 of the testing network, see Fig. 7) on November
26th, 2014 from 7 am to 12 pm. In the field experiment, we obtained the LPR data from both the upstream and downstream
intersections. Moreover, detailed ground truth information, including the actual timing plans of the downstream intersection (In-
tersection 1) from 7 am to 11:30 am as well as the actual cycle maximum queue lengths from 7 am to 10:15 am are collected. The
signal timing inference model and the queue length approximation model are tested on the link-level LPR dataset and validated
against the collected ground truth information.

In the actual implementation of the network-wide traffic state inference model, we set the time slice length as 180 s and con-
sidered 4 time slices in the DLG model. The reason that we only consider four time slices is due to the limited amount of data
available. Using more time slices will result in smaller number of data cases for parameter learning, which can potentially impact
model performance. We use five days’ data (2013/11–12, 11/14, 11/16–17) to learn the parameters of the DLG model, and use one
day’s data (2013/11/15) for testing. For each day, data from four time periods are extracted and used: 7:30 am-9 am, 9:30 am-12 pm,
13:30 pm-16:30 pm, 17 pm-19 pm. Data from other time periods are not used mainly due to the existence of missing data in some
intersections during these time periods. The link and path travel times with departure timestamps fall in every 180 s interval are
extracted from the network-level LPR dataset and processed into average link and path travel times. To incorporate more information
during the inference of traffic states of Type 2 and Type 3 links, we modeled 9 paths in the DLG model. Each path contains one or two
Type 2 or 3 links. The detailed path information can be found in Table 1. The signal timing plans and the lane-based cycle maximum
queue lengths are also computed using the signal timing inference model and the queue length approximation model. These

Fig. 8. Comparison of the signal cycle and phase length inference results of CWSMM and WSMM. The signal cycle length is obtained as the sum of
the green and red phase lengths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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information along with the average link and path travel times served as the input to the DLG model.
Two metrics, namely mean absolute error (MAE) and the mean relative error (MRE) are used to evaluate the performance of each

component in the proposed framework, which are calculated as follows:

= == =

=

MAE
d d

n
MRE

d d

d

| |
,

| |
i

n

i i
i

n

i i

i

n

i

1 1

1 (16)

where di is the ground truth value for observation i and di is the predicted values; n is the total number of observations in the testing
set.

6.2. Evaluation on the signal timing inference and queue length approximation

Using the detailed ground truth data in the link-level LPR dataset, we first present the validation results of the signal timing
inference model and the queue length approximation model.

6.2.1. Evaluation on the signal timing inference model
The testing intersection (Intersection 1) adopted fixed timing plans with ground truth cycle length of 120s (green phase length:

64s, red phase length: 56s) during 7:00 am-8:55 am, and 100s (green phase length: 62s, red phase length: 38s) during 8:55 am - 11:30
am. We test the performance of the proposed customized WSMM model with temporal smoothing term (CWSMM) against two
benchmark methods, which are the weighted soft margin maximization (WSMM) model (1-D reduced form of weighted SVM) and soft
margin maximization (SMM) model (1-D reduced form of SVM without weight, i.e. = =v v( 1) (1) 1). The parameters of SMM,
WSMM and CWSMM are set as = =M 0.1, 0.02, and the initial phase lengths b0 are set as 60s for both green and red phases. The
detailed results are presented in Fig. 8 and Table 2.

The results show that the proposed CWSMM model achieves good performance in estimating signal timing plans. The MRE of the
green and red phase length estimates are around 5% and 6% respectively. The MRE of signal cycle length estimates is even below 2%.
CWSMM greatly outperforms the benchmark WSMM and SMM model with much lower MAE and MRE in all tests. From Fig. 8, it can

Table 2
Overall signal timing inference results.

Model Metrics Signal cycle length Green phase length Red phase length

CWSMM MAE 3.23s 5.88s 5.57s
MRE 1.51% 4.69% 6.28%

WSMM MAE 13.03s 12.53s 11.48s
MRE 6.08% 9.99% 12.91%

SMM MAE 15.73s 14.52s 14.46s
MRE 7.33% 11.58% 16.26%

Fig. 9. Cycle maximum queue length approximation comparison. MAE = 2.34, MRE = 27.12%.
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be observed that the both SMM and WSMM results have much larger variances and sometimes significantly deviate from the ground
truth values. This typically occurs when there are very few vehicle timestamp observations in the signal cycle or cases with many
overlapping green and red phase observations (see the discussion in Section 3). Under such cases, finding the decision boundary of
the actual phase change time is much more difficult. By contrast, CWSMM overcomes this difficulty and produces more robust
estimates. This is mainly due to the introduction of the temporal smoothing term, which penalizes the result if it deviates too much
from the phase length of the previous signal cycle. This incorporates the prior information of fixed timing plan. Furthermore, compare
the results of SMM and WSMM, it can be observed that using heterogeneous weight values ( <v v( 1) (1)), WSMM achieves lower
MAE and MRE in all tests. This also confirms the effectiveness of using heterogeneous weight values in the signal timing inference
problem. It should also be noted that introducing the temporal smoothing term will also make the CWSMM less sensitive compared
with WSMM to abrupt changes in signal timing plan. For example, when the signal timing plan changed at 8:55 am, the CWSMM
needs 2–3 signal cycles to converge to the actual phase length, whereas such delay is not observed in the WSMM results. The
sensitivity of CWSMM can be controlled by varying the magnitude of the temporal smoothing parameter . For signalized inter-
sections that adopt semi-actuated or fully actuated controls, a smaller should be considered.

6.2.2. Evaluation on the queue length approximation model
The proposed queue length approximation model is validated against the ground truth cycle maximum queue lengths on the

through lane of the experiment road. The signal timing data estimated from the signal timing inference model are used to run the
queue length approximation model. The hyperparameters in the Gaussian process model are selected as

= = = =h r veh s0.5, 5, 2, 0.41 /threshold0 which produce cumulative departure curves that are neither too smooth nor too spiky.
When running the H-M algorithm to sample the parameter , we use 20,000 iterations with the burn-in ratio of 75%. Detailed queue
length approximation results are presented in Fig. 9. The queue length approximation model achieves reasonable estimation accu-
racy, with MAE = 2.34 and MRE = 27.12%. The estimated cycle maximum queue length curve captures the pattern of the actual
cycle maximum queue length curves well. The accuracy of the proposed queue length approximation model is even better compared
with the model developed in Zhan et al. (2015) (MAE = 2.75), which used LPR data from both the upstream and downstream
intersections and a embedded car-following model to capture queuing process. Compared with the model in Zhan et al. (2015), the
queue length approximation model proposed in this study is light-weighted, calibration-free and only needs information from the
downstream intersection. This makes it particularly desirable for our network-wide real-time traffic state inference problem. As the
queue length approximation model are not able to estimate maximum queue length under over-saturation traffic condition (see
discussion in Section 4), it is likely that the model will underestimate the actual queue length when heavy queuing is present, which
lead to potential inaccuracies in the queue length estimates.

6.3. Evaluation on the network-wide traffic state inference model

As there is no ground truth data available for the network-level LPR dataset, we select two Type 1 links (Link 5 and 26) and 1
observed path (Path 1), and use their actual average travel times as ground truth for evaluation. The DLG model is trained using five
days’ LPR data (2013/11–12, 11/14, 11/16–17) and tested using one day’s data (2013/11/15). In the subsequent discussion, we first
validate the Gaussian assumption of the DLG model using the real-world dataset. Then, we perform two evaluation experiments on
the network-wide traffic state inference model. The first experiment evaluates the accuracy of travel time estimation. In this ex-
periment, the average travel times of the two test links and one test path are set as unobserved and estimated by performing inference
on the DLG model using the test data. The detailed results of the link and path travel time estimations are analyzed in Section 6.3.2.
The second experiment explores the prediction capabilities of the proposed network-wide traffic state inference model. In this ex-
periment, we remove all the input data in the last 1 to 3 time slices in the test data (treated as unknown data in future time slices) and
perform inference on the DLG model using the data only from the first few time slices. This is very close to the case when using DLG
model for prediction. Detailed results of the prediction analysis are presented in Section 6.3.3.

6.3.1. Validation on the Gaussian assumption of the DLG model
A major assumption made in the DLG model is that the marginal distributions of the variables are Gaussian distributed. This

property enables efficient inference in the DLG model and the possibility of using the model for large traffic network. To check if the
Gaussian assumption is supported in the real-world dataset, we plotted the histograms and Normal distribution fittings of estimated
average cycle maximum queue lengths (Type 1 and 2 links) and average link travel times (Type 1 links) for some links in the testing
network, see Fig. A.11 and A.12 in Appendix. It can be observed that although not fitted perfectly, the average cycle maximum queue
lengths and average travel times of most links can be fitted reasonably well using Normal distribution. This confirms the validity of
the DLG model used in the network-wide traffic state inference problem.

6.3.2. Evaluation on travel time estimation
We perform exact inference on the DLG model to obtain the posterior marginal distribution of the average travel times of the two

test links P y D( | )l
T and one test path (see Eq. (15)), which are Gaussian distributions N y µ N z µ( | , ( ) ), ( | , ( ) )l

T
l
P

l
P

p
T

p
P

p
P2 2 with posterior
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mean µ µ,l
P

p
P and standard deviation ,l

P
p
P. To evaluate the results, we compute the MAE and MRE between the estimated posterior

mean values µl
P and the ground truth average link travel times. Moreover, as the model estimates the average travel time as a

probability distribution, two additional metrics are reported: the proportion of data fall within +µ µ[ , ]l
P

l
P

l
P

l
P interval (denoted

Fig. 10. Travel time estimation results for the Link 5, 26 and Path 1.

Table 3
Travel time estimation results.

Link MAE MRE ±P µl
P

l
P ±P µl

P
l
P2

Link 5 6.791s 8.98% 71.43% 94.29%
Link 26 10.340s 12.493% 75.00% 100%
Path 1 20.535s 8.82% 70.06% 91.02%
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as ±P µl
P

l
P) and the proportion of data fall within +µ µ[ 2 , 2 ]l

P
l
P

l
P

l
P interval (denoted as ±P µ 2l

P
l
P). These two measures reflect the

explanatory power of the model results. The detailed estimation results for the two test links are presented in Fig. 10 and Table 3.
The results show that the estimated posterior marginal distribution well captures the ground truth average travel times.

Comparing the posterior mean µl
P with the ground truth, the MRE for both test links are controlled under 13%, and the MAE are

around 6–11s. For the test on Path 1, the MRE is less than 9% and the MAE is about 20s. Nearly all the ground truth average travel
times are covered within the +µ µ[ 2 , 2 ]l

P
l
P

l
P

l
P interval, and more than 70% of data are covered within the +µ µ[ , ]l

P
l
P

l
P

l
P

interval. This shows that the estimated posterior marginal distributions explain the ground truth average link travel times well.
Compared with many travel time estimation methods that only provide point estimates, our approach estimates the posterior dis-
tributions of the average link travel times with both mean and standard deviation, thus provides a more robust characterization of the
estimated values. In this study, we only have a six-day LPR dataset. The limited amount of training data could lead to potentially
biased parameter estimates during learning the conditional transition distributions in the DLG model (e.g. yP Pq q q( | ), ( | )T T T T1 ). The
accuracy of the estimation results can be further improved if a larger LPR dataset with a longer temporal duration is used.

6.3.3. Prediction capabilities
We also explored the prediction capabilities of the proposed model. Here, we refer to the prediction at TP time slice as the

computation of the most likely traffic states of the network at time slice +T TO P given data observed up to and including the time slice
TO. The prediction can be perceived as a special case of the estimation process, in which all the data are missing for all links and all
time slices after TO. Again, the prediction can be achieved by performing exact inference on the DLG model with unknown ob-
servations at the predicting time slices. The assessment of the prediction capability is performed on the same test data (data from
2013/11/15) as the evaluation of the travel time estimation. We test the prediction performance of the model with TO ranges from 1
times slices ( =T 1, 2P and 3) to 3 time slices ( =T 1P ). For comparison purpose, the same test links are investigated. Table 4 presents
the detailed evaluation metrics of the travel time prediction experiments.

The results show that the prediction error increases with the increase of the prediction steps (TP), which is intuitive. Moreover, it is
found that the increase of the error is relatively small for both links. For example, for the case of =T 1O , the differences in MRE
between =T 1P and 3 are less than 0.5% for Link 5, about 2.5% for Link 26 and less than 0.5% for Path 1. This shows the prediction
capabilities of the model remain accurate for several future time slices. It is also observed that the prediction accuracy generally

Table 4
Travel time prediction results

Link TO TP MAE MRE ±P µl
P

l
P ±P µl

P
l
P2

3 1 6.266s 8.39% 68.26% 95.81%
2 1 6.268s 8.42% 66.47% 97.00%

Link 5 2 2 6.540s 8.28% 71.86% 95.81%
1 1 6.498s 8.40% 70.66% 96.41%
1 2 6.501s 8.64% 75.45% 95.21%
1 3 6.711s 8.94% 71.26% 95.21%
3 1 6.655s 8.30% 76.79% 96.43%
2 1 6.728s 8.39% 76.19% 97.02%

Link 26 2 2 7.759s 9.70% 73.81% 95.83%
1 1 6.761s 8.41% 77.38% 97.02%
1 2 7.999s 10.01% 74.40% 95.83%
1 3 8.747s 10.89% 73.81% 96.43%
3 1 18.705s 8.16% 70.89% 94.30%
2 1 18.786s 8.26% 69.62% 93.04%

Path 1 2 2 19.817s 8.56% 70.89% 91.14%
1 1 20.406s 8.95% 65.41% 91.82%
1 2 21.040s 9.20% 69.62% 90.51%
1 3 21.738s 9.31% 68.99% 91.14%

Table 5
Computational performance of the proposed model.

Components Time

Online components
Signal timing inference (per intersection and signal cycle) 0.53s
Queue length approximation (per lane and signal cycle) 1.60s
HDBN-inference (per 4 time slices: ×s180 4) 29.78s

Offline components
HDBN-learning 21.85 h
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improves (smaller MAE and MRE) with the increase of observed time slices TO. This is as expected, as more observed data from past
time slices will provide more accurate prior information about the network condition, thus facilitates the traffic state prediction.
Compared with the travel time estimation results in Table 3, it is observed that the prediction results achieve better accuracy when
the observed time slices are long enough and the prediction steps are small. For Link 26, all the prediction results are found to
outperform the estimation results. This observation is not surprising, as in the estimation experiment, the data from the two test links
are completely missing. The traffic states of the two links need to be inferred completely from the traffic states of neighboring links as
well as the path travel times. On the prediction settings, the traffic states of the two links are given in the first TO time slices as prior
knowledge, which greatly improves the inference even when the information from neighboring links are unknown in the future.

6.4. Computational performance

Table 5 presents the computational performance of each component of the proposed framework. The experiments are conducted
on a Quad-Core 3.4 GHz CPU and 16 GB RAM desktop computer. All the four components are implemented in Matlab. The inference
and learning of the DLG model are implemented based on the Bayes Net Toolbox library (Murphy et al., 2001). The online com-
ponents of the framework are very efficient. For different roads and intersections, all the online components can be computed in
parallel, which is important for real-time traffic state estimation and prediction. The largest amount of the time is spent on the
inference of the DLG model. For the implementation of the framework on larger networks, it is suggested to partition the network into
smaller sub-networks and apply the DLG on each sub-network. This will reduce the computation complexities and also enable parallel
running different DLG models for each sub-network, which will further reduce the overall computation time when modeling large
arterial networks.

The parameter learning of the DLG model is very slow compared with the online components, however, it only needs to run
offline. The learning process can be performed periodically (e.g. monthly) using the latest data. An advantage of the DLG model is
that it can be incrementally improved. That is, the parameters of the previously learned DLG model can be used as the initial
parameters when learning with the EM algorithm. This can also greatly improve the convergence speed of future model learning
processes.

7. Conclusion and discussion

LPR data are emerging data sources that have huge potential in estimating and forecasting urban arterial network performances.
We develop a data-driven statistical framework to infer real-time average cycle maximum queue lengths and average link travel times
for an arterial network partially monitored by LPR cameras. The proposed framework contains three components, namely the signal
timing inference model which infers signal timing information from vehicle departure timestamps; the queue length approximation
model which uses a Gaussian process model to estimate lane-based queue lengths; and finally a network-wide traffic state inference
model based on DLG model performs estimation and prediction on links with unobserved traffic states. A six-day network-level LPR
dataset and a more comprehensive link-level dataset collected in a field experiment are used to test and validate the model. The
proposed framework achieves good inference accuracy in the numerical experiments. The computational performance also de-
monstrates the efficiency of the framework, which allows for real-time implementation in urban networks with reasonable LPR
camera coverage. The proposed framework, as well as its sub-modules are also applicable to other types of vehicle re-identification
data that share similar characteristics with LPR data (e.g. RFID data). The recorded vehicle identifiers (e.g. real or virtual license-
plate number, RFID tags, etc.) and the passing timestamps information in such data sources can be used in the same way as LPR data
in the proposed framework.

This work provides an integrative statistical modeling framework to incorporate the rich information of LPR data in network-wide
traffic state estimation and prediction. It contributes to the literature in following aspects:

1. We present the first study in literature that exploits and utilizes the unique features of LPR data for urban network-level traffic
condition estimation and prediction.

2. We develop a complete solution for network-wide link average cycle maximum queue lengths and average travel time estimation
and prediction using a single source of data. The developed statistical framework combines both well-established traffic flow
theory and highly customized statistical machine learning models.

3. New methodologies of using LPR data for signal timing inference, queue length approximation and network inferences from
partially available data are developed. The methodologies are not restricted to LPR data, but also applicable to other vehicle re-
identification data with similar characteristics.

4. The proposed framework is highly efficient and calibration-free, which can be easily implemented in real-world arterial networks.
5. LPR data from a six-day network-level dataset and a link-based field experiment dataset are used to test and validate the model.

LPR data of such scale and comprehensiveness have never been examined in the literature.

Several future works can be done to further improve this research. First, the network-level LPR dataset used in this study contains
only six days’ data, which limits the amount of data usable when learning the DLG model. It will be meaningful to test the proposed
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framework with larger LPR datasets and examine the performance improvement under different sizes of training data. Second, as
there is no ground truth information from other data sources in the network-level LPR dataset, we only validated the average travel
times in the network-wide traffic state inference model. Additional field experiments can be conducted in the future to collect ground
truth queue lengths in order to further validate the estimation and prediction accuracy of the average cycle maximum queue length.
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Appendix A. Distributions of average cycle maximum queue lengths and average link travel times

Fig. A.11 and A.12

Fig. A.11. Histograms and normal distribution fittings of the estimated average cycle maximum queue lengths for some Type 1 and 2 links in the
testing network.
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Appendix B. Summary of notations used in the article

2.1. Problem definition

D LPR dataset.
I Intersection ID.
IDn License-plate number of vehicle n.
tn

d Departing timestamp of vehicle n.

lnn Departing lane of vehicle n.
T Index of time slice. Also used to represent vector or matrix transpose.
ql

T Average cycle maximum queue length of link l in time slice T.

yl
T Average link travel time of link l in time slice T.

xi
T Departing timestamp of vehicle i of a lane in time slice T.

zp
T Average path travel time for path p in time slice T.

qT Vector of queue length states of all links in time slice T.

yT Vector of average travel time of all links in time slice T.

zT Vector of average path travel time of all paths in time slice T.

xT Departing timestamp sequence of a specific lane from an observed intersection.

3. Traffic signal timing inference

xi Observed vehicle departing timestamp for vehicle i in a signal cycle.
ti Label of vehicle i indicating whether it belongs to the first phase ( 1) or the second phase (+ 1).
b Actual phase change time, which serves as the decision boundary for two signal phases.
bc Estimated phase change time of signal cycle c.
g (·) A decision function to classify vehicle departing timestamps to different signal phases.
v (·) A weight mapping from the observed label to a specific set of positive weight values.

O O,G
T

R
T Empirically observed longest green and red phase intervals in LPR data.

w A scale parameter in decision function g (·).

i The slack variable for the departing timestamp of vehicle i.
M A positive penalty term that controls the trade-off between the penalties of the slack variables

and the margin size.
A positive regularization term for the estimated phase change time b.

Fig. A.12. Histograms and normal distribution fittings of the average link travel times for Type 1 links in the testing network.
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4. Cycle maximum queue length approximation

i Cumulative departing index of vehicle i.
nc Total number of departing vehicles at the downstream intersection of a lane within signal cycle c.
TR Red phase length.
TG Green phase length.
TC Signal cycle length.

Queue clearance time.
rn Departure rate for normal departure flow.
rs Departure rate for saturation discharging flow.
qmax Cycle maximum queue length.

Departure process parameters = r r{ , , }s n .
µ t( | )D Mean cumulative departure process for a lane of a link at the downstream intersection during a

signal cycle, characterized by parameter .
x( | ) The cumulative departure curve given the observed departing timestamps at an intersection.
µN ( , ) Multivariate Gaussian distribution with mean µ and covariance matrix .

A multivariate Gaussian distributed disturbance term.
A scale parameter for the Gaussian distributed disturbance term.

k (·) Kernel function used to construct the Gaussian process.
K x x( , | ) Covariance matrix constructed using the kernel function k (·).

x x( , )n m Indicator function with value 1 if =x xn m; 0 otherwise.
h0 Amplitude parameter, which is a scaling factor determines variation of kernel function value

from their means.
Lengthscale parameter, which controls the smoothness of the kernel function.

rthreshold Departure rate threshold for identifying overly large normal departure rate.
U a b[ , ] Uniform distribution on interval a b[ , ].

5. Network-wide traffic state inference

qc ln
max
, Lane-level queue length estimate for signal cycle c and lane ln.

Llane The set of all lanes of a link.
Nc ln, Number of vehicles recorded on the lane ln during signal cycle c.
q̄max Link-level average cycle maximum queue length of a time slice.

l( ) The set of upstream links for link l.

ij
q Weight parameter in the linear-Gaussian distribution for ql

T of link l.

µl
q Offset parameter in the linear-Gaussian distribution for ql

T of link l.

l
q Standard deviation for ql

T of link l.
Ll Length of link l.

vl
f Free-flow speed of link l.

l
y Weight parameter in the linear-Gaussian distribution for yl

T of link l.
µl

y Offset parameter in the linear-Gaussian distribution for yl
T of link l.

l
y Standard deviation for yl

T of link l.
A Link-path correspondence matrix.

P A diagonal covariance matrix for path travel time distribution. = diag ( , , )P P Pnp1
2 2 ,

where np is the number of path modeled.
NT Number of time slices.
L Log-likelihood of the DLG model.

6. Experiment Results

MAE Mean absolute error.
MRE Mean relative error.
di Ground truth value for observation i.

di Predicted value for observation i.

±P µl
P

l
P The proportion of data fall within +µ µ[ , ]l

P
l
P

l
P

l
P interval.

±P µl
P

l
P2 The proportion of data fall within +µ µ[ 2 , 2 ]l

P
l
P

l
P

l
P

interval.
TO The time slices with observed data.
TP The time slices to perform prediction.
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