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ABSTRACT
Location-based check-in services enable individuals to share
their activity-related choices providing a new source of hu-
man activity data for researchers. In this paper urban hu-
man mobility and activity patterns are analyzed using location-
based data collected from social media applications (e.g.
Foursquare and Twitter). We first characterize aggregate
activity patterns by finding the distributions of different ac-
tivity categories over a city geography and thus determine
the purpose-specific activity distribution maps. We then
characterize individual activity patterns by finding the tim-
ing distribution of visiting different places depending on ac-
tivity category. We also explore the frequency of visiting
a place with respect to the rank of the place in individu-
al’s visitation records and show interesting match with the
results from other studies based on mobile phone data.

Keywords
Social media, large-scale, location-based data, human mo-
bility pattern, urban activity pattern

1. INTRODUCTION
The introduction of location-based services in social me-

dia applications of smartphones has enabled people to share
their activity related choices (check-in) in their virtual social
networks (e.g. Facebook, Foursquare, Twitter etc.) provid-
ing unprecedented amount of user-generated data on human
movement and activity participation. This data contains
detailed geo-location information, which reflects extensive
knowledge about human movement behavior. In addition,
the venue category information for each check-in is recorded
from which user activities can be inferred. Thus location-
based data offers us a new dimension of information relat-
ed to human activity categories with greater details. Re-
searchers are realizing the potential to harness the rich in-
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formation provided by the location-based data which has
already enabled many novel applications such as recommen-
dation system for physical locations (or activity) [1, 2] or
recommending potential customers or friend [3, 4]; and de-
termining popular travel routes in a city [5]. This data has
the potential to impact many other areas including trav-
el demand modeling, ubiquitous computing, epidemiology,
urban planning, security and health monitoring. As such, a
tremendous opportunity exists to develop fundamental tool-
s to analyze this very large-scale spatial and temporal da-
ta that allows one to understand the social and behavioral
characteristics of the users of location-based services.

Previous research efforts on individual activity-travel pat-
terns over longer time periods were usually based on people’s
movements through traditional surveys on travel journeys
[6, 7, 8]. The obtained information was based on question-
naires that are usually costly to implement and with intrin-
sic limitations to cover large number of individuals and some
problems of reliability. These efforts, however, demonstrated
that individual mobility patterns are strongly related with
land-use patterns as well as the built environment of a city,
and individual daily travel patterns exhibit great regularity
[9, 10, 11, 12, 13].

On the other hand, there are some recent mobility studies
that have used distance-based measures to characterize hu-
man mobility patterns using alternative datasets collected
from mobile phones [14], bank notes movements [15], and
subway smart-card transactions [16, 17] etc. These studies
however limit the understanding of the interplay between
selection of destinations for different activity purposes and
mobility dynamics due to the lack of information about the
purposes behind these movements. In this context, location-
based data has received increasing attention in the research
community, as the rich information in the data connects each
geo-location record with a venue category indicating the pur-
pose of the activity participated. In more recent studies,
Cheng et al. [18] investigated 22 million check-ins and ob-
served similar mobility pattern found in previous researches
[14, 15], which is a mixture of short, random movements
with occasional long jumps. Cho et al. [19] investigated the
relationship between human mobility and social relationship
using data from Gowalla and Brightkite. They found that
social relationships can explain 10% to 30% of all human
movements, while periodic behavior explains 50% to 70%.
However, the dimension of human activity was not consid-



ered in both of the researches. In this paper, by considering
the temporal dimension and activity categories (i.e. purpos-
es) into the analysis, we discover more realistic and detailed
descriptions of human mobility dynamics. Considering the
activity purposes in the analysis will enable us to develop
advanced models for predicting mobility decisions.
We consider the location-based data obtained from online

social media check-in services to characterize urban human
activity and mobility patterns. We first investigate the char-
acterization and visualization of aggregate human mobility
and activity patterns by constructing a virtual grid refer-
ence of a city map into square cells of 200 by 200 meters.
We discover a relationship between the popularity of a cell
and the probability of visiting the cell. Spatial distributions
of visiting different places are also determined for various ac-
tivity purposes by counting the number of purpose-specific
visits within each cell and computing the proportion of vis-
its to each cell for each activity category. This generates
activity distribution maps showing the popular places with-
in a city and the functionality of each part of the urban
area. Check-in distributions appear differently for differen-
t activity categories suggesting a strong influence of urban
context on people’s destination choices. Using Kernel densi-
ty estimation methods we construct time-dependent activity
density maps. Using this approach, we can also visualize d-
ifferent human activities in a city and thus capture the pulse
of urban human activities.
Next we investigate the characterization of the spatio-

temporal aspects of individual mobility patterns. We de-
termine a set of statistical properties to characterize human
mobility based on check-in data from online social medi-
a. First, we observe the timing of visiting different places
depending on activity category. Second, we explore the fre-
quency of visiting a place with respect to the rank of the
place in individual’s visitation records. Recently it has been
suggested that the visitation frequency of the Lth most visit-
ed location is well approximated by Zipf’s law: P (L) ∼ L−η,
with η ≈ 1.2 independent of N the total number of visited
locations [14, 20].
In following sections we present the description of the data

set and the findings related to individual mobility and urban
activity patterns.

2. DATA COLLECTION

2.1 Dataset
The dataset used in this analysis is collected from a wide-

ly used social media tool called Twitter where users can
post short messages up to 140 characters. These short mes-
sages are generally called status message in the social me-
dia norm and specifically called “Tweets” in Twitter. When
permissions are given by the users, each of their tweets are
attached with a corresponding geo-location. In addition to
posting status messages, Twitter allows its users to post sta-
tuses from third-party “check-in” services (e.g. Foursquare).
When Foursquare users “check-in” to a place this status can
be posted to their Twitter pages. In this work we use a
large-scale check-in data available from [18]. The dataset
contains check-ins from Feb, 25, 2010 to January, 20, 2011.
On average each user has 25 check-ins.
An example of a tweet with a “check-in” looks like:

tweet(79132591248261120)={189872633, ####,
79132591248261120, Fri Jun 10 10:27:34 +0000 2011,

Table 1: New York Dataset Details

Original dataset
Number of users 20606
Number of check-ins 680564
Study sample
Number of users 3256
Number of check-ins 504000

Table 2: Activity Category Classification

Activity Category Type of Visited Location
Home Home (private), Residential Building

(Apartment/Condo)
Work Office, Coworking Space, Tech Startup,

Design Studio
Eating Coffee Shop, Restaurant, Pizza, Burg-

er, Caf, Diner, Steakhouse, Sandwich,
Bakery, Breakfast, Bagel Shop, Taco
Place, Gourmet Shop, Tea Room, etc.

Entertainment Pub, Nightclub, Bar, Entertainment,
Arcade, Theater, Club, Concert Hall,
Other Nightlife, Dance Studio, Opera
House, Casino, Event Space, etc.

Recreation Park, Gym, Playground, Dog Run,
Scenic Lookout, Beach, Lake, Zoo or
Aquarium, Field, Tennis Court, Re-
sort, Ski Area, Soccer Field, etc.

Shopping Supermarket, Store, Plaza, Pharmacy,
Bookstore, Mall, Farmers Market, Bou-
tique, Miscellaneous Shop, Automotive
Shop, Food & Drink Shop, etc.

40.7529422,-73.9780177, “I’m at Central Cafe & Deli
(16 Vanderbilt Ave., New York) http://4sq.com/jMS87x”}

After collecting the original dataset we select subsets of all
the observations within three different cities in US, which are
New York, Chicago and Los Angeles. We create a boundary
region for these cities and extract all the check-in observa-
tions within that region. The New York dataset has largest
amount of data, with 20606 users and 680564 check-in ob-
servations, while Chicago dataset has 7136 users and 193825
check-in observations, and Los Angeles dataset has 11298
users and 314783 check-in observations. We select New Y-
ork dataset as our main dataset, and perform most of our
analysis based on the New York dataset. However to find in-
dividual longitudinal mobility patterns we study only those
users who have more than 50 check-ins. Some basic infor-
mation about the New York dataset are given in Table 1.
Chicago and Los Angeles dataset are used to conduct city-
level comparison of popular places for different activities,
which will be introduced in section 3.1.

2.2 Identification of Activity Categories
One of the major advantages of using location-based so-

cial media data is the ability to identify activity purposes.
Each check-in observation reports a short link to the origi-
nal location-based service provider (e.g. Foursquare). When
queried in the location-based service provider, this link gives
information about the category of the visited venue. We
classify different activity categories based on the type of the
visited locations (see Table 2). About 94.5% of the check-



ins have any category information available; for rest of the
check-ins their respective categories were not resolved.

3. AGGREGATE SPATIAL ACTIVITY PAT-
TERNS

3.1 Popular Places for Different Activities
To locate each check-in activity, a virtual grid reference

is constructed by dividing the map into square cells of size
200meters × 200meters. We rank cells based on the num-
ber of check-ins for each activity category. For example,
for a specific activity category, rank 1 represents the cell
which has the highest number of check-ins for that activity
category and so forth. We compute the frequency of check-
ins for each of those ranked places. Figure 1 presents the
frequency of visiting a place against its corresponding rank
for each of the activity categories of the three cities: New
York, Chicago and Los Angeles. The ranking pattern for
different activity categories for different cities indicate that
urban places are selected with diminished regularity. Fur-
thermore, the regularity patterns follow a common scaling
law as the distributions are fitted to truncated power laws
P (L) ∼ L−α exp−λL. Table 3 presents the exponents fitting
the truncated power law distributions for the three cities.
The term L−α dominates the distribution when the ranking
L is small. Thus a larger α indicates a faster probabili-
ty decrease when L is relatively small. Furthermore, each
distribution has a cutoff value represented by 1

λ
which cap-

tures the finite size of the activity locations for each activity
category. Figure 1 shows how this cutoff value varies over
activity categories for different cities. For instance, for New
York City, these cutoff values are 116 and 588 for work and
eating activities respectively indicating the number of cells
where many people go for these specific activity purposes.
Low values of the exponents indicate that below the cutoff
values probability of selecting a cell does not vary signifi-
cantly.
The ranking of a cell can be perceived as a measure of cell

popularity, as higher ranking cells (smaller L) correspond
to the places with higher number of check-ins indicating
stronger ability to attract visitors. Preferential selection (a
process where new objects tend to attach to popular object-
s) of activity locations exists in the ranking distribution for
popular places. Popular places are more likely to attrac-
t both new and repeated visitors explaining the power law
like curve (a straight line in log-log plot) of the distribution
before the cutoff value. However, for cells with higher rank-
ing (L) value, the probability decrease is much faster and
resulting in a truncated power law distribution. There are
several mechanisms that can explain the faster probability
decrease for less popular cells. Schedule and distance con-
straints restrict the number of visits that a person can make
or the less popular places may simply not be known by most
people, so the preferential selection process fails in this case.
Although this phenomena are very intuitive in the context
of mobility behavior, our findings confirm that there is a re-
markably simple scaling law explaining why few places in a
city have most of the visitors.
Although the data for New York, Chicago and Los An-

geles can be generally fitted into truncated power law dis-
tribution, however differences exist in the fitted exponents.
It is observed that the λ parameters for Chicago are con-
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Figure 1: Probability of a cell being visited by all the trav-
elers against the corresponding rank of the cell



Table 3: Exponents fitting the truncated power law distributions

New York Chicago Los Angeles
Activity Category α λ α λ α λ
Home 0.3749 0.0020 0.4347 0.0051 0.4695 0.0021
Work 0.3797 0.0086 0.6899 0.0179 0.4897 0.0041
Eating 0.4722 0.0017 0.4732 0.0029 0.3853 0.0010
Entertainment 0.4558 0.0032 0.6029 0.0042 0.5914 0.0020
Recreation 0.5715 0.0018 0.6194 0.0040 0.6093 0.0016
Shopping 0.7781 0.0012 0.6709 0.0028 0.6356 0.0009

sistently larger than the other two cities. This is mainly
due to fewer places that have check-ins and smaller size of
dataset compared with the other two cities. Despite the ef-
fect of inflated λ parameters of Chicago, similarity exists
for some activity categories across cities, such as recreation
and shopping (large α and small λ), showing that the most
popular cells attracts major proportion of visits. The dif-
ferences of the exponents in the cell ranking distribution for
different activity categories reveals how individuals choose
to perform different activities in places with different pop-
ularity levels in the city, which indirectly reflect the unique
urban characteristics.

3.2 Spatial Distributions of the Popular Places
We count the total number of check-ins for different activ-

ity purposes for each of this cells. The frequency for a cell
for a specific activity purpose corresponds to the number of
check-ins to that place. Figure 2 shows the check-in densi-
ty for different activity categories of the Manhattan Island
area in New York City. Figure 2a presents such a distri-
bution where it indicates that people’s home related visits
are scattered over the city. As shown in Figure 2b, from
the distribution of work related visits we find that there are
not many check-ins at work related locations. However the
work related visits are not as uniformly distributed as the
home-related visits due to the concentrations of business lo-
cations at specific regions. In general it is found that home
and work-related visits are scarce in social media check-in
data compared to other human movement data (e.g. subway
smart card transactions [16]).
Similar distributions for other activity categories can be

derived by observing the frequency of visiting different places
in the city for specific activity purposes(see Figures 2f-2e).
These figures suggest that there are more check-ins for “oth-
er” (e.g. shopping, eating, entertainment and recreation)
activity related visits than home and work-related visits. In
general, there are few places that have a very high number of
people that usually visit for shopping, eating, entertainment
and recreation purposes; and the higher the frequency the
more popular a place is. However these popular places are
different depending on activity purpose. Furthermore, the
distributions of check-in look different for various activity
purposes. For instance the spatial check-in distributions for
shopping (Figure 2f) and eating (Figure 2c) activities look
very different. For shopping purpose check-in distributions
are scattered all over the city while for eating purpose check-
in distributions are concentrated within a specific area of the
city.

3.3 Kernel Density Estimations of Spatial Dis-
tributions of the Popular Places

In section 3.2 we present the check-in density for differ-
ent activity categories. In this section we adopt a non-
parametric approach to estimate the check-in density dis-
tributions. To find the density of check-ins for each cell
for a specific activity category, we use kernel density esti-
mation technique [21] with a 2-dimensional Gaussian kernel
and Silverman’s rule for optimal bandwidth selection. Fur-
thermore, to obtain time-dependent distributions, check-in
data is split into different categories in 3-hour intervals, and
probability density distributions are estimated for each case.
Figure 5 in Appendix shows the kernel density estimation re-
sults for the Manhattan Island area in New York City. Four
activity categories are presented, which are eating, enter-
tainment, recreation and shopping, as these activity cate-
gories have apparent activity centers.

Compared with the grid maps (Figure 2), kernel density
estimations provide more statistical information. The esti-
mation results yield smooth distributions eliminating the lo-
cal noise in certain degree. It also provides a non-parametric
probability distribution integrating over all the sample space
and with optimal bandwidth used to minimize the error be-
tween the estimated density and the true density. From the
kernel density results, we can visualize the activity centers
related to different activity categories at different time peri-
ods.

The kernel density estimation results reveal that the pat-
terns for the evolution of activity centers can be classified
into two groups: the first group is represented by eating and
entertainment activity category, in which the activity center
shifts from one region to another region as time elapses in a
day; the other group is represented by recreation and shop-
ping activity, in which activity centers seems remain station-
ary, since recreation sites like parks and shopping places like
malls has consistent ability to attract visitors. The distinct
patterns in urban activities are associated with the nature
of different type of activities, and the information from k-
ernel density estimation can help us to study the dynamic
evolution of activity centers of each category in both space
and time.

4. INDIVIDUAL MOBILITY PATTERNS

4.1 Temporal Mobility Patterns
To uncover the temporal regularity of urban human mo-

bility, we investigate the distribution of visits for activity
purposes at different hours of the day (see Figure 3). We
also analyze the weekly rhythm of these visits. We observe
that activity purpose has a pronounced impact on the time
of activities. For instance eating activities has three distinc-
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Figure 2: Check-in Density for Different Activity Categories

t peaks around noon (12pm), evening(6pm) and late night
(11pm). Entertainment activities have peaks around late
night as these visits mostly constitute of going to bars and
night clubs. Weekly patterns suggest that shopping and
recreation trips are predominant in the weekends.

4.2 Visitation Frequency
To find the probability of visiting a place we rank (L) each

individual’s visited places based on the number of times one
visits the places over the study period. For instance, rank
1 represents the most visited place; rank 2 the second most
visited place and so on. Then we calculate the frequency of
each of these ranked places. Individuals are grouped based
on the total number of different places they visit (N).
Figure 4 shows the probability of visiting different places

against their corresponding ranks. People visit differen-
t places with diminished regularity. We observe that the
distributions in Figure 4 follow a Zipf’s law P (L) ∼ L−η

with an exponent that depends on the total number of visit-
ed locations. We find the coefficient of the Zip’f law η ≈ 1.2
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Figure 3: Temporal Check-in Densities for a) all activities
b) different activity categories

similar to the results from the mobile phone observation-
s [20]. This resemblance is surprising given that there are
certain kinds of activities (particularly work related visits)
that are missing in the check-in data (see section 3.2).

Previous study [16] found that most of the times people
pay visits only to a few locations (two most visited places)
and the probability of visiting the most visited place and
the second most visited place are close to each other in val-
ue indicating most individuals’ regular routine pattern of
movements between their home and work location. Howev-
er, since online social media users have less number of check-
in activities at their homes and workplaces such pattern is
not observed in our analysis.

5. CONCLUSIONS
This paper presents fundamental findings related to the

spatio-temporal patterns of aggregate and individual mobil-
ity in a city using online social media data. Contrary to
other mobility studies based on mobile phone call record-
ings, check-in observations and subway smart card transac-
tions, we introduce activity category as a new dimension to
our analysis. We first demonstrate how to characterize the
temporal and spatial aspects of the mobility and activity
patterns. From an aggregate perspective, it is found that
people do not select their destinations randomly. Rather
they select these places based on the popularity of the cor-
responding place; this means that, specific to an activity cat-
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egory, the more people select a place the more likely another
person will select it. We discover a scaling law showing the
relationship between the popularity of a place and the prob-
ability to select this place as a destination. We compare the
relationship for different activity categories over three major
cities in U.S. It is also found that the spatio-temporal distri-
butions of check-in activities for different activity categories
have distinct patterns. This implies a strong influence of
urban contexts on peoples’ activity participation and desti-
nation choices. Moreover, we observe different patterns for
the evolution of urban activity centers in both space and
time, which are closely related with the nature of the specif-
ic activity categories. In terms of individual-level patterns
we observe that online social media users do not have many
check-in activities in their homes and work places and users
select places with diminishing probability following a Zipf’s
law. The exponent of the Zipf’s law matches closely with
the result from mobile phone studies. With the additional
activity category information introduced in the analysis, the
empirical findings from this study provide us richer insights
on urban human mobility patterns.
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APPENDIX

Ea(9-12h) Ea(12-15h) Ea(15-18h) Ea(18-21h) Ea(21-24h) Ea(0-3h)
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Sh(9-12h) Sh(12-15h) Sh(15-18h) Sh(18-21h) Sh(21-24h) Sh(0-3h)

Figure 5: Kernel Estimation of Check-in Densities for Different Activity Categories. Ea- Eating En-Entertainment Re-
recreation and Sh-Shopping activity. The numbers in the parentheses represent the start and end hour of the interval.


