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ABSTRACT7

The spatial correlation between urban sprawl and the underlying road network has long been8

recognized in urban studies. The accessibility to road networks is often considered as an approx-9

imation for the measurement of human mobility, which is a key factor in determining potential10

urban sprawl in the future. Despite the close relationship between urban development and road11

networks, the spatial dependency of these two spatial layers has never been systematically evalu-12

ated. This paper conducts a comprehensive investigation on the spatial dependency between these13

two spatial layers using an urban expansion dataset between 2000 and 2010 of East Asian regions14

and the road network data from OpenStreetMap. Four Chinese cities, namely, Beijing, Shanghai,15

Chengdu and Shenzhen are selected to conduct the analysis. The spatial correlations between the16

urban sprawl and road networks are first quantitatively analyzed using Ripley’s cross-K function.17

Highly significant spatial correlation have been observed in all the four tested cities. A Bayesian18

network model is also developed to verify the predictability of urban sprawl using the spatial and19

structural features extracted from the existing road networks as well as the spatial pattern of the20

past built-up areas. The results show an affirmative answer to the predictability of urban sprawl, by21

achieving an overall accuracy of 79% in classifying urban sprawl and undeveloped areas. Finally,22

the hidden dependencies among the urban sprawl and the extracted spatial features are interpreted23

and analyzed based on the Bayesian network structure learned from the data.24
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INTRODUCTION25

The road network defines a basic template of the urban area that strongly constraints the urban26

development. It plays a prominent role in humanmobility and activity analysis that directly impacts27

our understanding of urban sprawl patterns. The accessibility to road network is often considered28

as an important approximation for the measurement of human mobility, which is a key factor of the29

potential urban sprawl in a city (Obregón-Biosca et al. 2015). As a result, the co-location patterns30

of the existing urban settlement and the transportation infrastructures can be easily observed in31

many cities in the world. Such strong spatial correlation between urban built-up areas and road32

networks has naturally led to a hypothetical question: does strong spatial correlation exist between33

urban sprawl and road networks?34

The evidences of the correlation between construction of new roads and future urban sprawl35

have long been recognized in literature (Harvey and Clark 1965; Bhatta 2010; Zischg et al. 2019).36

For example, the construction of highways leads to both congestion in the city and rapid outgrowth37

(Harvey and Clark 1965). A study by Yang (2002) on the urban sprawl of Atlanta during 1973-199938

also observed outward spread of high-density urban use alongmajor transportation routes. Although39

the majority of urban sprawl studies mainly focus on analyzing macroscopic factors that impact the40

city growth, such as urban geometry, size relationship between cities, economic functions, social41

demographic and ethnic patterns, etc., many researchers have started incorporating road related42

features in modeling and forecasting urban sprawl (Yang and Lo 2003; Cheng and Masser 2003;43

Irwin and Bockstael 2007; Fregolent and Tonin 2016; Xu et al. 2014) due to the observation of44

existence of possible correlation between urban sprawl and road networks. For instance, Cheng and45

Masser (2003) developed a spatial logistic regression model to predict the urban sprawl pattern of46

the city of Wuhan in China. The model incorporated a set of variables that measure the distances47

of the given area to multiple types of road. Their study showed that the urban road infrastructure48

is one of the major determinants of urban growth.49

Despite the growing consensus of the potential association of urban sprawl and the underlying50

road network, the spatial dependency patterns of these two spatial layers have never been systemat-51
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ically evaluated, and many important research questions still remain unanswered. For example, one52

simple but fundamental research question is that to what degree the urban sprawl and underlying53

road network are correlated. Quantifying the level of spatial correlation serves as a first step for54

us to fully understand the causal factors behind the coevolution of these two closely related spatial55

layers. Further, it helps to answer some interesting questions, such as: does a local cluster of urban56

sprawl always correspond to a local cluster of road networks? Are there any density threshold or57

other conditions exist on the structure and spatial distribution of the road network to enable the58

urban sprawl? If so, how can we design the road network to guide the desirable urban sprawl?59

This study aims to abridge these two spatial layers together by comprehensively investigating the60

spatial dependency between urban sprawl and road networks. Specifically, we investigate following61

sub-questions: (1) on what level the urban sprawl and road network are spatially correlated? (2)62

given the existence of such strong correlation, is urban sprawl predictable? And what are the63

relevant spatial features in determining the urban sprawl?64

In this study, a large-scale urban expansion dataset between 2000 and 2010 of East Asia region65

from World Bank (Schneider et al. 2015; World Bank 2015) and the road network data extracted66

from OpenStreetMap (OpenStreetMap 2016) are used to conduct the analysis. Four different67

Chinese cities, namely, Beijing, Shanghai, Chengdu and Shenzhen are selected for the analysis.68

The spatial correlations between the urban sprawl and road networks are first quantitatively analyzed69

using cross-K function. The urban sprawl and the road network are converted into two spatial point70

processes with the original spatial relation information preserved to enable the utilization of cross-K71

function. A Bayesian network model is then developed to verify the predictability of urban sprawl72

using the spatial and structural features extracted from the existing road networks as well as the73

spatial patterns of the past built-up areas. Finally, the hidden relationships among the urban sprawl74

and the extracted spatial features are interpreted by analyzing the inferred structure of the Bayesian75

network.76

The paper is organized as follows: the next section describes the data used in this study. Section77

3 quantitatively evaluates the extent of spatial correlations between the urban sprawl and road78
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networks of different cities. Section 4 develops an Bayesian network model to investigate the79

predictability of urban sprawl and further explores the contributing features associated with the80

urban sprawl. The final section concludes the paper.81

DATA82

The data used in this chapter were obtained from multiple sources. The urban sprawl data were83

obtained from a large-scale urban expansion dataset produced in a World Bank study (Schneider84

et al. 2015; World Bank 2015), which contains the urban expansion information across the East85

Asian region (stretching from Mongolia to the Pacific Islands) between 2000 and 2010. The data86

are in raster map format. The map is divided into 250×250m uniform cells and a specific label is87

assigned to each cell to indicate whether the cell is a built-up area before 2000, a new urban sprawl88

area between 2000 and 2010, or an undeveloped area by 2010. The road network data of the year89

2012 from OpenStreetMap OpenStreetMap (2016) were extracted to provide an approximation of90

road network structure at the year 2010. Ideally, wewant to use two sets of road network data around91

2000 and 2010 to fully explore the spatial dependency between urban sprawl and road networks.92

Unfortunately, high-quality road network data in China around the year 2000 are not obtainable,93

hence we focus on analyzing the spatial dependency of urban sprawl and the road network structure94

after the urban sprawl.95

Four representative cities from different geographical regions of China were selected to conduct96

the spatial dependency analysis, namely Beijing (north), Shanghai (east), Chengdu (southwest) and97

Shenzhen (south). All the four cities have experienced rapid urban sprawl during the 2000-201098

period. Both the urban sprawl and the road network data of the four cities were extracted. The urban99

sprawl pattern and the underlying road networks are illustrated in Fig.1a-1d (map data obtained100

from OpenStreetMap), and their summary statistics are presented in Table 1. The urban sprawl101

data in raster format were further processed and converted into a set of labeled points by placing102

a point at the center of each 250×250m cell. Every cell is thus represented by a specific point103

with a label that indicates the urban development condition of the area. The conversion from cell104

to points enables the urban sprawl to be modeled as a spatial point process and allows for more105
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efficient computation in the analysis. For convenience, we refer to the points labeled as built-up106

areas as built-up points, the urban sprawl area as urban sprawl points and the rest of the points as107

undeveloped points.108

SPATIAL CORRELATION BETWEEN URBAN SPRAWL AND ROAD NETWORK109

The co-location patterns of urban sprawl and road networks are evident in many cities, since110

roads are built to make the human settlements accessible to other parts of the city. However, such111

correlation patterns have never been systematically investigated, and many research questions still112

remain. For example, to what degree these two spatial layers are correlated? Does a local cluster113

of urban sprawl always correspond to a local cluster of road networks? To adequately address114

these questions, the spatial correlation between the urban sprawl and road network needs to be115

quantitatively evaluated. In this section, we develop a quantitative evaluation method to examine116

the degree of spatial correlation between urban sprawl and road networks. The approach is based117

on a new distance measure (point-to-road distance) for evaluating the spatial proximity between a118

point process and a spatial network, as well as the cross-K function.119

Model development120

There is a large body of research and statistical techniques on measuring the spatial correlation121

between two spatial point processes, including the Ripley’s Cross-K function with Monte Carlo122

simulation (Cressie 1993), mean nearest-neighbor distance (Dixon 2002), and spatial regression123

models (Chou 1997). However, there is no existing method on evaluating the spatial correlation124

between a point process and a spatial network, as the spatial relationship between a point and a line125

segment is far more complex than a pair of points. To utilize the well-established theoretical results126

on the spatial correlations of point processes as well as generalize the analysis to point-network127

analysis, we construct a new point process from the road network while preserving sufficient spatial128

relationship between the given point process and the original road network. The key step of this129

construction is to introduce a new set of points (referred as access point) and a new distance130

measure (referred as point-to-road distance) to evaluate the spatial proximity between a point and131

a road segment. Given a target point (e.g. an urban sprawl point), the corresponding access point132
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on a road segments is defined as its projection (point on the road segment that has the minimum133

distance to the target point) on the road segment. Since the points on a curve does not necessarily134

form a convex set, the projection operation may not lead to the unique solution. Under such cases,135

we only pick one point in the solution set as the access point. The point-to-road distance between136

the target point and a road segment can thus be defined as the great-circle distance (the shortest137

distance between two points on the surface of a sphere) with Earth radius between the target point138

and the corresponding access point of the road segment. Fig.2 presents a conceptual illustration of139

the aforementioned access point and the point-to-road distance. There are three important features140

of this construction:141

1. Every target point has only one access point for each road segment.142

2. The point-to-road distance captures the spatial proximity of the target point and a road143

segment. As a large point-to-road distance indicates all points on the road segment are far144

away from the target point.145

3. All roads that have a point-to-road distance smaller than h to the target point will have146

non-empty intersection with the area formed by the neighborhood of the target point with147

radius h. Hence the set of access point in the neighborhood of the target point corresponds148

to the same set of road segments that intersect with the neighborhood area.149

Given the above three important features of the access points and the point-to-road distance, the150

spatial relationship between the point process and the spatial network can be adequately captured.151

The spatial correlation of the two spatial layers can thus be approximated by the spatial correlation152

between the point process and a set of constructed access point processes for each target point in153

the original point process.154

The most widely used spatial statistics for evaluating the spatial correlation between two point155

processes is the cross-K function, a generalization of Ripley’s K-function (Cressie 1993; Huang156

et al. 2004; Dixon et al. 2002). The cross-K function for binary spatial features is defined as follows:157
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Ki j(h) = λ−1
j E[number of type j instances within distance of a randomly chosen type i instance]

where λ j is the density (number per unit area) of type j instances and h is the distance. Without158

edge effect (Cressie 1993; Dixon et al. 2002), the cross-K function can be estimated by159

K̂i j(h) =
1

λiλ j A

∑
k

∑
l

Ih(d(ik, jl)) (1)160

where A is the total area of the study region, d(ik, jl) is the distance between the kth instance161

of type i and the lth instance of type j; Ih(d(ik, jl)) is the indicator function which takes value162

1 if d(ik, jl) is smaller than h, 0 otherwise. The edge effect arises because points outside the163

study region are not counted in the numerator, even if they are within distance h of a point in164

the study region (Dixon et al. 2002). However, fully removal of the edge effect needs to perform165

the computationally expensive edge-correction, thus is often omitted (Cressie 1993). In our case,166

since the spatial correlation is measured between the urban sprawl points and their corresponding167

access point sets, above estimator needs to be modified to make it suitable for our analysis. Denote168

P = {pi, i = 1, 2, · · · , n} as the set of urban sprawl points, Q = {qi
r, r = 1, 2, · · · ,m} as the set169

of access points of urban sprawl point pi, in which qi
r is the access point of pi on road r , and170

dpr(pi, r) = d(pi, qi
r) is the point-to-road distance between point pi and road r . The equivalent171

estimator of cross-K function without edge-correction can be modified as follows172

K̂i j(h) =
A

nm

n∑
i=1

m∑
r=1

Ih(dpr(pi, r)) (2)173

The cross-K function characterizes pairwise spatial relationship between two point processes.174

To test the extent of spatial correlation between two point processes, a typical treatment is to175

compare the results against the curve of K(h) = πh2, which indicates complete spatial randomness176

when edge effect is not present. However, in this study, the edge effect is present. This can be177

easily observed from the urban sprawl pattern of Shanghai (Fig.1b) and Shenzhen (Fig.1d), as a178
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considerable amount of urban sprawl areas are located near the boundary of the two cities. Thus179

comparing against the curve of K(h) = πh2 is not appropriate and may lead to biased results. In180

this study, we adopt an alternative approach by comparing the result against a baseline cross-K181

function produced by the urban sprawl points and a completely independent point process with182

points randomly generated inside the study region. The random points generation is performed183

using Monte Carlo simulation with the number of random points equal to the number of road184

segments. We run the simulation 20 times for each city and report the 0.05-0.95 quantile of the185

computed baseline cross-K functions.186

Experimental results187

Fig.3a-3d show the results of the cross-K function for the four cities investigated in this study.188

In all of the four cities, the curves of cross-K functions are much higher than the 0.05-0.95 quantile189

of the baseline cross-K functions. It suggests that in all distance scales, the average number of road190

segments within distance h to an urban sprawl area is much higher compared with an independent191

and randomly distributed point process with the same density. This clearly indicates that strong192

attraction behavior exists, that the urban sprawl areas and the road segments tend to be co-located.193

The cross-K function results for Beijing, Shanghai and Shenzhen exhibit similar patterns, where194

their cross-K function values are about twice as much as the baseline cross-K function values,195

which means in average, there are about twice the number of road segments located within certain196

distance to an urban sprawl point compared with the number of points generated by an independent197

randomly distributed spatial process. The variance of the baseline cross-K function of Shenzhen is198

a little larger (wider 0.05-0.95 quantile range) compared with the results of Beijing and Shanghai,199

which might caused by more significant edge effect. Different from the previous three cities,200

Chengdu exhibits much stronger spatial correlation between urban sprawl and road networks, as its201

cross-K function curve is significantly higher than the baseline cross-K function curve. This might202

caused by the mountainous terrain surrounding Chengdu, that most of the urban development areas203

and roads are concentrated in a series of clusters. The higher level of local clustering contributes204

to a stronger spatial correlation between the two spatial layers. Despite the differences, the results205
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in all the four cities confirmed the existence of strong spatial correlation between the urban sprawl206

and the underlying road networks.207

PREDICTABILITY OF URBAN SPRAWL GIVEN UNDERLYING ROAD NETWORK208

The previous section provides an affirmative answer to the existence of strong correlation209

between urban sprawl and the underlying road network. Given the existence of strong spatial210

correlation, a natural and more interesting research question to be answered is that: is urban sprawl211

predictable using the information contained in the road network structures? And what are the212

relevant spatial and structural features in the road network that provide discriminative information213

on deciding whether an area is part of the future urban sprawl or remains undeveloped during214

a specific observation period. Answering these questions will not only contribute to a better215

understanding of the mechanism behind the co-evolution of urban sprawl and road network growth,216

but also have important practical implications. For example, understanding of the structural impacts217

of road networks can provide insights on guiding road network construction that lead to desirable218

and healthy urban sprawl in the future.219

In this section, we focus on addressing aforementioned questions by verifying the predictability220

of the urban sprawl using spatial and structural features extracted from the road network as well as221

the spatial pattern of the past built-up areas. The problem is cast into a binary classification and222

prediction problem on the area label (urban sprawl or undeveloped). A Bayesian network model223

is developed to learn the dependencies and causal relationships between extracted spatial features224

and the area labels, and further predicts the target area label.225

Spatial feature extraction226

To begin our analysis, a set of spatial features were first extracted from the urban sprawl and the227

road network data. A list of extracted features as well as their descriptions are presented in Table228

2. Our target variable is sprawlLabel which encodes the actual state of the area, e.g. whether it229

is an urban sprawl or undeveloped area. Two global statistics are computed, namely minUrbDist230

and minRoadDist which are the distances of the area to the nearest built-up area and the road231

segment (using point-to-road distance) respectively. Local spatial features within 1km radius of232
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a target area were also extracted, including the number of built-up areas (NneighUrb) and road233

segments (NneighRoad) fall within the 1km radius; the number of road intersections with 3 or234

more approaches (Nintersection); and the lengths of each road type based on corresponding type235

information provided in OpenStreetMap (primaryLen, secondaryLen, localLen, otherLen). More236

detailed information on the extracted features can be found in Table 2. When computing the road237

lengths, we only calculated the part of length of the road segment within the 1km radius circle,238

rather than the total length of the road segments. The local road density can thus be obtained by239

summing the extracted road length of different types and divided by π × 12km2.240

Since the feature extraction is computationally extensive, for each city, we randomly selected241

500 urban sprawl areas and 500 undeveloped areas as instances and extracted all the spatial features242

for every instance. Hence, for each of the four cities, we obtain a dataset of 1000 instances. After243

that, the dataset for each city were randomly partitioned into 2 sub-datasets, the first contains 800244

instances which served as the training set, and the second contains 200 instances which served as the245

testing set. In the actual implementation of the urban sprawl prediction model, the feature otherLen246

was removed from the model training and testing phase. As it is correlated with primaryLen,247

secondaryLen, localLen and roadDensity (primaryLen+secondaryLen+localLen+otherLen ∝248

roadDensity) and does not provide additional information.249

Urban sprawl prediction250

Since all instance labels are known, we adopted the supervised learning approach in machine251

learning to predict the area labels. Four widely used supervised learning classifiers were tested and252

examined in this study, namely, Naïve Bayes, support vector machine (SVM), random forest and253

Bayesian network. The Naïve Bayes is a simple probabilistic classifier based on Bayes’ Theorem,254

which assumes conditional independence among features. SVM is another popular method, which255

classifies data by maximizing the distance between the decision boundaries defined by a set of256

control points (support vectors) (Bishop 2006). On the other hand, the random forest (Breiman257

2001) approach is an ensemble method, which uses a combination of randomly generated decision258

tree classifiers to increase accuracy. TheBayesian network (Bishop 2006) is a probabilistic graphical259
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model which represents a set of random variables U = {x1, x2, · · · , xn}, n ≥ 1 and their conditional260

dependencies via a directed acyclic graph (DAG). A Bayesian network represents a probability261

distribution as follows262

P(U) =
∏
u∈U

p(u|pa(u)) (3)263

where p(u|pa(u)) is the conditional probability table between random variable u and its parents264

pa(u). More detailed background information about the theory, learning and inference procedures265

of Bayesian network can be found in (Bishop 2006; Koller and Friedman 2009). We used the266

machine learning software Weka (Hall et al. 2009) to implement all of the previous four supervised267

learning classifiers. The training dataset for all of the four cities were combined (4000 instances)268

to train each classifier, and the overall classification accuracy on the combined test datasets (800269

instances) were used as the final criteria for model selection. The Bayesian network was found to270

achieve the highest overall classification accuracy of 79%, thus was selected as the final model to271

perform the urban sprawl prediction task. Another advantage of using the Bayesian network for272

our analysis is that Bayesian network has the ability to reflect causal relationships between between273

variables. As is shown in Pearl (Pearl 2009), if a set of variables have causal relations, and the274

Bayesian network is built such that arcs fully represent the causal paths between variables, then the275

resulting Bayesian network will encode dependencies and probabilistic relations between variables.276

This property is particularly helpful for us to identifying relevant spatial features that impact the277

urban sprawl.278

To implement the Bayesian network, we first discretized each continuous feature into a set279

of discrete states. The K2 algorithm developed by Cooper et al. (Cooper and Herskovits 1992)280

was then applied to learn the structure of the Bayesian network as well as the parameters in the281

conditional probability tables p(u|pa(u)), ∀u ∈ U. In the prediction phase, using the already learned282
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conditional probability tables, the area label for area i is predicted as follows:283

sprawlLable∗i = argmaxsprawlLableP(sprawlLable|xi) ∝
∏
ui∈U

p(ui |pa(ui)) (4)284

where xi is the set of all observed features except sprawlLable for area i.285

Experimental result286

The structure of the Bayesian network learned from the training data is presented in Fig.287

4. It can be observed that all the extracted spatial features are closely associated with the area288

label, as there is a direct arc connecting sprawlLable to every other feature. This indicates that289

the emergence of an urban sprawl area has the potential to impact all the local features of the290

road network. It confirms our intuition that urban sprawl and road network are co-evolved with291

each other, and the development of urban settlement will lead to the construction of new roads292

in order to establish connectivity to other parts of the city. Among other spatial features, the293

conditional dependency between the distance to closest road segments (minRoadDist) and the road294

density (roadDensity) is obvious, since a location that is far away from any other road segments295

is not possible to have high local road density. The road lengths of different types (primaryLen,296

secondaryLen, localLen) are conditionally dependent on road density (roadDensity) and the number297

of neighboring road segments (NneighRoad), which is also intuitive. The distance to the closest298

road segment (minRoadDist) and the number of neighboring road segments (NneighRoad) are299

conditionally dependent on the distance to the closest built-up area, which also makes sense. As300

locations that are far away from any existing built-up areas are less likely to have dense road network301

as well as the potential of urban sprawl. From above analysis, it can be observed that the structure302

of Bayesian network provides rich information about the hidden relationship among the extracted303

spatial features, and allows us to better understand the role of each spatial feature in the emergence304

of urban sprawl.305

The developed Bayesian network model was validated using the test dataset of the four studied306

cities. The testing results of the combined test set as well as the test set for each city are presented307

12 Zhan and Ukkusuri, July 13, 2019



in Table 3. The confusion matrix for the experiment using the combined test set is presented in308

Table 4. In addition to the accuracy measure, F-measure (also refer as F1 ) is used to evaluate the309

classification quality on the test sets, which is a commonly used accuracymeasure in datamining. F-310

measure is computed as the harmonicmean of precision (percentage of testing data that are classified311

as positive are actually positive) and recall (percentage of positive testing data that are classified312

as positive), which is calculated as F-measure = 2(precision × recall)/(precision + recall) . A313

higher F-measure suggests a better classification result.314

It can be observed that even only use the spatial information provided in road networks as315

well as the past built-up areas, the Bayesian network can achieve about 80% overall accuracy in316

classifying the area labels. The accuracy of both Beijing and Shanghai are around 80%. For the317

best case - the result of Chengdu, the accuracy even achieved 85%. As we have already observed in318

Section 3, Chengdu exhibits highest level of spatial correlation between urban sprawl and the road319

network. This confirmed our hypothesis that high level of spatial correlation indeed contributes to320

the predictability of urban sprawl. The test accuracy of the experiment for Shenzhen is the lowest,321

however, still reaches 73%. The relatively lower accuracy for Shenzhen might again associated322

with the edge effect discussed in Section 3, which also impacts the spatial feature extraction. As323

the training and testing instances are randomly selected, if they are located close to the boundary324

of the study region, the local spatial features will be incomplete and lead to inaccurate information.325

For the results of the F-measure, not surprisingly, Chengdu has the highest F-measure for both area326

label classes among the four cities. The F-measure for urban sprawl areas are consistently higher327

than the F-measure for areas remain undeveloped, which suggests lower misclassification error in328

predicting urban sprawl areas, this partly indicates the urban sprawl is relatively more predictable329

than the areas that will remain undeveloped during the observation period. All the results show that330

the urban sprawl is highly predictable given the strong spatial correlation between urban sprawl and331

the road networks. Furthermore, the dependency relationship among the extracted spatial features332

revealed by the structure of Bayesian network can also be used as an input to guide the road network333

construction that leads to a more desirable and healthy urban sprawl in the future.334
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CONCLUSION335

This paper systematically investigates the spatial dependency between urban sprawl and the336

underlying road networks. An urban sprawl dataset between 2000 and 2010 for East Asia region337

and the road networks from OpenStreetMap are used in this study. Four Chinese cities, namely,338

Beijing, Shanghai, Chengdu and Shenzhen are selected to conduct the analysis. The spatial339

correlation between the urban sprawl and road network is first quantitatively evaluated using cross-340

K function. Highly significant spatial correlation has been observed in all of the four tested cities.341

A Bayesian network model is then developed to verify the predictability of urban sprawl given the342

existence of strong spatial correlation of the two spatial layers. The results provide an affirmative343

answer to the predictability of urban sprawl, that about 79% of overall prediction accuracy is344

achieved by using a set of spatial and structural features extracted from the road networks as well345

as the spatial patterns of the past built-up areas.346

There are some limitations of this study. First, since the historical road networks around year347

2000 is not obtainable, some of the research questions related to the co-evolution of the urban348

sprawl and road network can not be fully explored. Also, as this study focuses on exploring the349

spatial dependencies between the urban sprawl and the road network structure, thus the prediction350

of urban sprawl solely rely on the spatial correlation of these two spatial layers. It is expected that351

even higher prediction accuracy can be achieved when incorporating additional information, e.g.352

the terrain feature of the city, demographics characteristics such as population growth, GDP growth353

during the observation period and the prior knowledge from the local planning policies, etc. Future354

research can be done to develop more comprehensive decision support tools for city planners for355

more accurate urban sprawl prediction.356
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TABLE 1. Summary of the urban sprawl in the four cities

Summary statistics Beijing Shanghai Chengdu Shenzhen
Total area (km2) 9,910.31 5,264.28 11,487.77 1,858.72
Total number of built-up points 28,546 17,549 11,113 9,597
Total number of urban sprawl points 13,992 16,428 8,484 4,099
Total number of undeveloped points 116,044 50,259 16,4232 16,048
Total number of road segments 46,711 11,151 47,442 18,739
Population at 2000 1633.0 1858.0 1257.9 701.2
Population at 2010 1961.2 2301.9 1404.8 1035.79
Population growth 20.10% 23.89% 11.68% 47.71%
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TABLE 2. Description of the extracted features

Feature name Description
sprawlLabel Binary variable indicating the class of the 250 × 250m area:

urban sprawl (1) and undeveloped area (0)
minUrbDist Great circle distance (km) to the nearest built-up area
minRoadDist Point-to-road distance (km) to the nearest road segment
NneighUrb Number of existing built-up areas within 1km radius
NneighRoad Number of road segments within 1km radius
roadDensity Road density within 1 km radius (km−1)
Nintersection Number of intersections with at least 3 approaches within 1km radius
primaryLen Total distance (km) of primary road (e.g. primary link, motorway, raceway)
secondaryLen Total distance (km) of secondary road (e.g. secondary link)
localLen Total distance (km) of local road (e.g. residential, services, pedestrian,

footway)
otherLen Total distance (km) of other road types in OpenStreetMap
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TABLE 3. Testing results for the Bayesian network

Testing set Beijing Shanghai Chengdu Shenzhen Combined
Number of test instances 200 200 200 200 800
F-measure: urban sprawl area 0.818 0.814 0.838 0.733 0.799
F-measure: undeveloped area 0.778 0.732 0.865 0.727 0.780
Overall accuracy 80% 78% 85% 73% 79%
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TABLE 4. Confusion matrix for the experiment using combined testing set

Actual/Predicted Urban sprawl Undeveloped area sum
Urban sprawl 334 80 414
Undeveloped area 88 298 386
Overall accuracy 79%
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Fig. 1. Illustration of urban sprawl of four Chinese cities from 2000 to 2010 and their corresponding
road networks
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Fig. 2. Conceptual illustration of the access point and the point-to-road distance
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Fig. 3. Cross-K function for four cities in China. Solid lines are the plots of cross-K function K(h).
Dash lines are 0.05 and 0.95 quantiles of the baseline cross-K function of the urban sprawl points
and a randomly generated point process estimated from 20 Monte Carlo simulations.
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Fig. 4. The structure of the Bayesian network learned from data
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