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Dynamics of functional failures and recovery in complex road networks
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We propose a new framework for modeling the evolution of functional failures and recoveries in complex
networks, with traffic congestion on road networks as the case study. Differently from conventional approaches,
we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting
and coalescing embedded within the original network structure. The proposed model successfully explains traffic
congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical
analysis shows that certain network structural attributes can amplify or suppress cascading functional failures.
Our approach represents a new general framework to model functional failures and recoveries in flow-based
networks and allows understanding of the interplay between structure and function for flow-induced failure
propagation and recovery.
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I. INTRODUCTION

Flow-induced functional failures are common phenomena
in many human-engineered and natural flow-based networks.
The functional performance of such networks is reflected by
how efficiently flow is propagated across the network, and their
functional failures are mostly due to flow overload (e.g., traffic
congestion in transportation network, power surge in electric
grids, flooding in drainage network). Traffic congestion in
urban road networks is a typical case of a functional failure
process in flow-based networks. It can be perceived as a form
of temporary partial functional failure resulting from a high
traffic load. Under congestion, certain segments of roads are
temporarily closed or operating at a reduced efficiency, causing
partial or full functional losses in the network. Compared
with structural disruptions, functional failures such as traffic
congestions are more frequent and pose significant operational
and monetary loss to urban communities.

It is always desired to design infrastructure networks
that suppress the emergence and cascading of functional
failures. However, even the first step towards this goal,
modeling the functional failure process and the resulting
network performance, has been shown to be a difficult and
not-well-understood problem. The structural characteristics
and functional features of flow-based networks interact in
complex ways that jointly determine how and where functional
failures emerge, how the functional failures propagate, and
how recovery occurs [1–8].

Traditional approaches to functional failure analysis seek
to obtain the network functional performance by solving for
flow patterns in the network using optimization-based methods
[9,10] or traffic simulation [11,12]. This detaches network
functional performances from structural details, leading to an
incomplete understanding of the underlying mechanisms of
the failure-recovery processes. Incorporating the propagation
characteristics of real-world flows and their overloading
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behaviors in structural analysis has long been recognized
as a challenging research question [13–15]. This is because
the flow patterns in the network are governed by both the
flow propagation principles (e.g., traffic equilibrium in traffic
networks [9,10], routing behavior in information networks
[16–18], minimum energy dissipation principle in river net-
works [19,20]) and the network structure [21]. Overlaying flow
propagation principles on the structure of networks is difficult;
it has been shown to be analytically tractable only in special
cases, such as trees [20], starlike and homogeneous structured
networks [14], and ring-and-hub structures [2,22]. To model
functional failures and recoveries in real-world networks, new
analytical tools need to be developed to capture the nontrivial
interactions of network structure and functions.

We propose a vertex split-recovery model for examining
traffic congestion evolution process in urban road networks.
Unlike traditional studies, which distribute traffic flow in
the network and use road capacities to identify congestion
[9,10], the proposed model transforms congestion as a dynamic
structural process in the network. The model is built on a dual
representation of road networks augmented with functional
states. We show that the congestion and recovery in a road
network under this representation is equivalent to the splitting
and coalescing of dual vertices. To construct the model,
we collect high-temporal-resolution network traffic state data
from two megacities in China (Beijing and Shanghai). Based
on the insights from empirical observations, we model the
vertex split-recovery process as a composite of four stochastic
processes: (i) self-splitting, vertex split due to network-wide
loading of traffic; (ii) self-contagion, where congestion prop-
agates along the same roads (same dual vertex); (iii) neighbor
contagion, where congestion cascades to neighboring roads
(neighboring dual vertex); and (iv) recovery, where congestion
in road segments recovers (coalescing of split dual vertices).
The proposed model can explain the congestion evolution
phenomenon in real-world data and provides new insights
into the interplay of structure and function in flow-based
networks.
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FIG. 1. Illustration of functional dual mapping and the vertex
split-recovery process. (a) Primal representation of a road network;
roads are labeled as numbers, and intersections as letters. (b) Dual
representation of the road network in (a). (c), (d) Split and recovery
of dual vertex 2 due to congestion on the HE segment of road 2.

II. FUNCTIONAL DUAL MAPPING AND VERTEX
SPLIT-RECOVERY

Conventional representation of road networks perceives
intersections as vertices and road segments as edges, referred
to as primal networks. Recently, dual representation of road
networks has gained more attention from researchers; it
represents intersections as dual edges and merges individual
road segments into meaningful stretches of roads represented
as dual vertices based on certain criteria, e.g., axial direction,
name of the street, road classes, and continuity [23–25]. The
concept of dual representation is different from the “dual
graph” in graph theory, which relates to the faces of planar
graphs. The hierarchical intersection continuity negotiation
(HICN) model [25,26] is among the best dual-representation
approaches for road networks. According to HICN, two con-
secutive road segments belong to the same road if they have the
same road class and the convex angle they form is close to 180◦.
The benefits of using dual representation are that dual-mapped
networks are no longer constrained by planar embedding
and uncover the underlying network hierarchy. For example,
important roads in the network tend to be long and connected
to many other roads, which leads to a large vertex degree in the
dual-mapped network. An important finding is that both small-
world and scale-free properties are observed in dual represen-
tation of road networks [23–25]. It is found that the dual-vertex
degree distributions of different road networks have similar
power-law exponents γ , varying between 2 and 3 [23,24].

We consider an extended form of HICN dual mapping
that incorporates the functional states of the network, termed
functional dual mapping. The key idea is to perform dual

mapping on a function-state-encoded network. This treatment
enables conversion of the congestion evolution, a functional
process, into a structural process (see Fig. 1). Figure 1 provides
an illustration of functional dual mapping. Consider road
2 in network G in Fig. 1(a); under dual representation,
road 2 will be mapped to a dual vertex in Fig. 1(c) that
consists of road segments KH, HE, and EB. Assume that
road segment HE gets congested and temporarily loses its
functional connectivity. From the functional perspective, the
current network is equivalent to a network with road segment
HE removed (referred to as G′). If dual mapping is performed
on G′, road 2 will be represented as two disconnected dual
vertices, 2′ and 2′′ in Fig. 1(d). Under functional dual mapping,
the congestion and recovery on road segments are equivalent
to dual-vertex splits and merging of the previously split dual
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FIG. 2. Plots of the evolution of dual degree distributions
for function-augmented dual networks: (a) Beijing road network
(12/14/2015); (b) Shanghai road network (7/7/2016). The black line
and the colored lines represent the degree distribution of the base dual
network and the function-augmented dual networks at different times
of day. Logarithmic binning is used for better clarity. The degree
distribution of the base dual network can be fitted to a power-law
distribution, p(k) ∼ k−γ , for k � kmin = 3, γ = 2.58 (Beijing) and
k � kmin = 4, γ = 2.48 (Shanghai).
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FIG. 3. Behavior of the vertex split-recovery process using the 7-day congestion evolution data from the Beijing road network. (a) Plot
of the normalized vertex- split probability. The y axis is the normalized vertex-split probability P̄s(k)/P̄ (k). P̄ (k) and P̄s(k) are the average
proportions of degree k dual vertices and degree k dual vertices with vertex split in the function-augmented dual networks. Both P̄ (k) and P̄s(k)
are obtained by averaging the results from function-augmented dual networks at all time steps during the day. (b) Probability distribution of
the degree ratio Rk for binary vertex splits, which can be fitted to a beta distribution [β(1.697,1.697)]. (c) Distribution of the duration time t

between the time at which the vertex gets split and the time at which it recovers, which can be approximated by an exponential distribution.

vertices in functional dual-mapped networks (referred to as
function-augmented dual networks). We refer to the original
dual-mapped network as the base dual network GD(VD,ED),
which corresponds to the network without any congestion.

To track the dynamic vertex split-recovery process that
represents the congestion evolution, functional dual mapping
is applied and creates a series of function-augmented dual
networks Gt

D(V t
D,Et

D) for each time step t (see Appendix A).
The variations of dual degree distributions within a day
for the function-augmented dual networks is shown in Fig. 2.
The degree distribution of the base dual network can be
fitted to a power-law distribution, p(k) ∼ k−γ for k � kmin.
In the function-augmented dual network, high-degree dual
vertices are more likely to experience vertex split, causing
faster probability decay at the tail. This leads to deviation of
the power-law distribution but can be better fitted to a power
law with an exponential cutoff distribution, p(k) ∼ k−γ e−κk .

III. EMPIRICAL OBSERVATIONS

To explore the behavior of the real-world vertex split-
recovery process, we perform empirical analyses using net-
work congestion evolution data from two megacities in China:
Beijing (the road network within the fourth ring road contains
17 148 road segments) and Shanghai (the road network within
the middle ring road contains 18 173 road segments). The
network-wide link travel times of these two megacities were
collected from an online digital map service in China (Baidu
Map) every 40–60 min from 06:00 to 24:00 using a data
crawler, which allows for tracking of the congestion evolution
on an hourly basis (Beijing, around 40 min; Shanghai, around
60 min). Seven days of network state data from Beijing road
network in December 2015 (12/6–12/8, 12/10–12/12, and
12/14) and six days of data from Shanghai in July 2016
(7/7, 7/9–7/13) were collected. All road travel time data were
converted to road speeds. The collected link travel times were
further compiled into binary functional states (failed state 0,
congested; working state 1, not congested) at each time step.
We identify a link as congested when its speed is less than 20%

of its speed limit. For simplicity, we model the road network
as an undirected network. For a road segment that carries
bidirectional traffic, we consider the segment in the failed state
if traffic in either of the two directions gets congested. Figure 3
presents some observed behaviors of the vertex split-recovery
process using the 7-day congestion evolution data from the
Beijing road network.

The vertex degree and splitting histories of dual vertices
are found to be the two major factors governing the vertex-
splitting process. Important roads in the network usually serve
as backbones of the network and tend to have high vertex
degrees in the dual-mapped network. These roads are more
likely to carry a larger amount of traffic and, thus, prone to
congestion. Figure 3(a) confirms the intuition that the overall
normalized vertex-split probability shows a positive correlated
trend with the dual-vertex degree, especially low-degree dual
vertices. Extreme probability values (0 and 1) for high-dual-
degree vertices are caused by their small sample sizes. There
are only one or two such dual vertices in function-augmented
dual networks at specific time steps, and they are thus more
likely to yield a probability of 0 or 1.

Numerical analysis also reveals the facilitative impact
of splitting history on future vertex splits. Suppose a dual
vertex is split at some time step, and then congestion is
more likely to propagate along the same road as well as
to neighboring roads, causing further vertex splits at later
time steps. Some typical examples of this phenomenon are
the propagation of traffic kinematic waves [27] and the
queue spillover on oversaturated roads [28]. It is observed
that the conditional probability of vertex split under the
existence of vertex split of the original dual vertex (self-split)
in the previous time step [P (split|has previous split) = 0.23]
is significantly higher than in the case where there are no
previous self-splits [P (split|no previous split) = 0.03]. Sim-
ilarly, the conditional vertex-split probability under the
existence of neighbor splits in the previous time step
[P (split|has previous neighbor split) = 0.05] is about twice
as high as in the case where none of the neighboring dual ver-
tices split [P (split|no previous neighbor split) = 0.03]. This
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phenomenon is also related to the formation of gridlock in
road networks [29], where traffic congestion spreads across
neighboring roads and causes severe local network functional
failure. Both observations confirm that a split history increases
the vertex-split probability, and the impact of historical self-
split is much larger than that of splits occurring in neighboring
dual vertices.

We also examined the changes in dual degree after each
vertex is split. To simplify the analysis, we considered only
binary splits. If there are multiple vertex splits at a time step,
we decompose them into a series of binary vertex splits. For
each binary split, assume that the original dual vertex of degree
k splits into two subvertices of dual degree k′ and k′′, the
ratio Rk = k′/k (referred to as the degree ratio) is found to
be roughly approximated by a symmetric beta distribution,
β(β + 1,β + 1) [Fig. 3(b)], where β ∼ 0.7. This indicates that
the conditional split probability of a degree k dual vertex can be
modeled as P (k′|k) ∝ [k′(k − k′)]β . It suggests that dual ver-
tices are more likely to split into two dual vertices with similar
dual degrees rather than highly unbalanced dual degrees.

Figure 3(c) presents the distribution of the time duration for
a split vertex to recover. The time duration is measured as the
number of data collection steps (around 40 min for the Beijing
road network). Due to Internet delay during the data collection
process, the actual length of each time step can be slightly
different (typically 2–5 min). It is found that the duration
time t can be approximated by an exponential distribution
[Pc(t) = θe−θt , t > 0]. The recovery process can be captured
using a remarkably simple statistical distribution which is
common in modeling the survivor times of many physical,
biological, and economic processes [30,31]. Moreover, the
exponential duration-time distribution for dual vertices that
remain in the split condition also implies a constant recovery
rate in the system.

IV. VERTEX SPLIT-RECOVERY MODEL

We propose a vertex split-recovery model for the functional
failure process in urban road networks based on the equivalent
representation of road congestion and vertex split-recovery.
We introduce the following model assumptions based on the
insights from the previous empirical observations:

(1) No splitting of degree 1 dual vertices.
(2) Binary split and no degree loss: A dual vertex of degree

k splits into two subvertices of degrees i and k − i.
(3) Conditional splits: The resulting degree of the split

subvertices of a dual vertex of degree k follows some
conditional splitting probability distribution P (i,k − i|k).

(4) Self-splitting: Each dual vertex can split at some self-
split rate ρ(k,η(t)) due to the network loading of flow, where
η(t) is a functional measure of the network loading level at
time t . We further assume that ρ(k,η(t)) = (k − 1)η(t).

(5) Self-contagion: If a dual vertex of degree k has an
unrecovered split, it will continue splitting at rate g(k) =
τ (k − 1), where τ is a fixed rate.

(6) Neighbor contagion: A split dual vertex will cause its
neighbor to split at a fixed rate λ. Moreover, if the neighboring
dual vertex of degree k already splits into subvertices, the
impact on each subvertex of degree ki is λki−1

k−1 (ratio of the

potential number of splits for the subvertex to that for the
original dual vertex).

(7) Recovery: Each vertex split recovers at a fixed rate θ .
With the above model assumptions, we can simulate the

vertex split-recovery process in the function-augmented dual
network. However, directly solving the detailed network
configuration at a particular time step will be analytically
intractable. Instead, we are interested in the expected stationary
solution of the vertex split-recovery process in the stable
state under a constant network loading level [η(t) = η]. This
solution is relatively easy to obtain while providing sufficient
insights about the final impact of the vertex split-recovery
process. In the following, we present a two-level model to
obtain this expected stationary solution. The microscopic-level
model characterizes the expected behavior for a degree k

dual vertex after S splits and focuses only on an individual
dual vertex. The macroscopic-level model characterizes the
evolution of the number of splits for each dual vertex in the
entire network.

A. Microscopic-level model

If we remove the recovery history of the dual vertex (if a
dual vertex has split but later recovered, we ignore this split)
until time t , the splitting history of a dual vertex can be repre-
sented as a ranked planar Markov branching tree [32]. Markov
branching trees were introduced by Aldous [33] as a class of
random binary or multifurcating phylogenetic models, which
is widely used in phylogenetic studies [33–35]. A ranked plane
tree is defined as a tree where we distinguish the left and right
child vertices of an internal vertex, and every internal vertex is
labeled by an integer keeping track of the ordering in which the
splits occur during the construction of the tree. The internal
ordering is necessary in our case, since each dual vertex is
comprised of an ordered set of road segments, and such order-
ing is preserved during the vertex splits caused by functional
failures. Figure 4 presents an illustration of the ranked planar
tree representation of the vertex-splitting history.

FIG. 4. Illustration of the ranked planar tree representation of
the vertex-splitting history. Road A (dual degree k = 5) experiences
congestion at time t1 and t2, which results in two dual-vertex splits.
Under the ranked planar tree representation, it can be represented as
two consecutive branchings of the tree.
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FIG. 5. Monte Carlo simulation results of the expected proportion of the degree i split subvertices after S splits [mi(k,S)/(S + 1)] for
degree k dual vertices: (a) k = 10; (b) k = 100. Computed using 50 000 simulation runs of the generating process of the microscopic-level
model.

Here we consider a special generating process that approx-
imates the ranked planar tree for the splitting history of a dual
vertex of degree k having S splits:

(i) First split: The first split partitions the dual vertex
into leaf vertices of degree k1 and k − k1 according to the
conditional splitting distribution P (k1,k − k1|k).

(ii) At the ith split: In all leaf vertices, selecting a leaf
vertex j of degree kj with a probability proportional to kj − 1.
Split vertex j into two new leaf vertices of degree kj1 and
kj − kj1 according to P (kj1,kj − kj1|kj ).

(iii) Stop after all S splits are performed.
Based on the empirical observations, we define that the

conditional splitting distribution has the form P (i,k − i|k).
That is,

P (i,k − i|k) = [i(k − i)]β∑k−1
j=1 [j (k − j )]β

. (1)

When k → ∞, the normalized splitting location i/k asymp-
totically follows a symmetric beta distribution [β(β + 1,

β + 1)]. This generative process is similar to the incremental
construction method in the beta-splitting model for evolu-
tionary trees proposed by Sainudiin and Véber [32], which
constructs the evolutionary tree by incrementally partitioning
an interval (vertices are represented as intervals). The value of
β represents different splitting behaviors:

(i) β = 0, uniform split: The split location is chosen
uniformly at k − 1 possible locations.

(ii) β > 0: The favored split location is in the middle
section. This is the case reflected in the empirical observation,
where we have β ∼ 0.7.

(iii) β < 0: The favored split location is at the two ends.
In the microscopic-level model, we are interested in the

expected degrees of leaf vertices for a degree k dual vertex after
S splits. Define M(k,S) = [m1(k,S),m2(k,S), . . . ]T , where
mi(k,S) is the expected number of split subvertices of degree
i for a dual vertex of degree k after S splits. For S = 1, it can
be easily shown that

mi(k,1) =
{

2[i(k−i)]β∑k−1
j=1 [j (k−j )]β

, i < k;

0, i � k.
(2)

For S > 1 and i = 1,2, . . . ,k − S − 1, it can be proved that
the following recursive formulation holds (see Appendix B):

mi(k,S + 1) = k − S − i

k − S − 1
mi(k,S)

+ 1

k − S − 1

k−S∑
s=i+1

(s − 1)ms(k,S)mi(s,1).

(3)

Although the closed-form expression for the above recur-
sive formulation is only known for the reduced case β = 0
(see Appendix C), mi(k,S) can be computed by recursively
solving Eq. (3) or using a Monte Carlo simulation based
on the generating process. Numerical tests show that the
expected degree distribution for the split subvertices mi (k,S)

S+1

asymptotically follows a beta distribution β(α̃(k,S),β̃(S)),
where α̃(k,S) increases monotonically with an increase in
both k and S, and β̃(S) decreases with an increase in S

(Fig. 5).

B. Macroscopic-level model

The macroscopic-level model focuses on the entire network
rather than individual dual vertices. It characterizes the
evolution of the number of splits for each dual vertex in
the entire network at stable state (t → ∞) under a constant
network loading level (η(t) = η). We model the evolution
of the number of splits of a dual vertex v of degree k in
the network as a continuous-time Markov chain involving
k states (0,1, . . . ,k − 1). Each state represents the number
of splits Sv . To simplify the model, we further assume that
the states can only increase or decrease Sv by 1 at each
transition. This can be perceived as a special generalization
of the susceptible-infected-susceptible model in epidemiol-
ogy [36]. The differences are that the susceptible-infected-
susceptible model considers only two states, susceptible and
infected, and the transition between these two states, while
in the macroscopic-level model, we have transitions among k

states.
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For a dual vertex v in the base dual network, let ki be the
degree of its ith child vertex after splitting. Define the sign
function sgn(Sv) = 1 if Sv > 0 and 0 otherwise. The rate of

transition between states can be modeled as
follows:

(i) Transition rate from Sv → Sv + 1 (Sv < k − 1):

Sv+1∑
i=1

⎡
⎣ρ(ki,η) + g(ki)sgn(Sv) + λ

ki − 1

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ = (k − 1 − Sv)

⎡
⎣η + τ · sgn(Sv) + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦. (4)

(ii) Transition rate from Sv → Sv − 1 (Sv > 0): θSv .
Equation (4) computes the overall rate of increase in Sv contributed by its Sv + 1 child vertices, where ρ(ki,η) and g(ki)sgn(Sv)
are the self-splitting and self-contagion rates of the ith child vertex, and λki−1

k−1

∑
(u,v)∈ED

sgn(Su) is the overall neighbor-contagion
rate at the ith child vertex from all the split neighboring dual vertices [sgn(Su) > 1].

Let probability distribution Xv(t) = (xv
0 (t),xv

1 (t), . . . ,xv
k−1(t)), where xv

S (t) is the probability of dual vertex v at time t having
S splits. Suppose all dual vertices initially do not have vertex splits [xv

0 (0) = 1, ∀v ∈ VD], using the previous transition scheme,
the state equation for each dual vertex v at time t in the network can be written as

dxv
0 (t)

dt
= −xv

0 (t)(k − 1)

⎡
⎣η + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ + θxv

1 (t),

dxv
1 (t)

dt
= −xv

1 (t)(k − 2)

⎡
⎣η + τ + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ − θxv

1 (t) + xv
0 (t)(k − 1)

⎡
⎣η + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ + 2θxv

2 (t),

dxv
S (t)

dt
= −xv

S (t)(k − 1 − S)

⎡
⎣η + τ + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦

− Sθxv
S (t) + xv

S−1(t)(k − S)

⎡
⎣η + τ + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ + (S + 1)θxv

S+1(t), 1 < S < k − 1,

dxv
k−1(t)

dt
= xv

k−2(t)

⎡
⎣η + τ + λ

k − 1

∑
(u,v)∈ED

sgn(Su)

⎤
⎦ − (k − 1)θxv

k−1(t). (5)

The state equations model the changes in xv
S (t) caused by four

types of state transitions: (i) a decrease due to transition from
S to S + 1; (ii) a decease due to recovery from S to S − 1;
(iii) an increase due to transition from S − 1 to S; and (iv) an
increase due to recovery from S + 1 to S.

Directly solving such a large coupled differential equation
system is highly complex. We utilize the degree-based mean-
field (DBMF) approximation [37–40] to gain some insights
into the behavior of the stationary solution. The DBMF
approximation for dynamical processes in networks assumes
that all vertices of degree k are statistically equivalent. Under
the DBMF approximation, we only need to consider Xk(t) =
(xk

0 (t),xk
1 (t), . . . ,xk

k−1(t)), where xk
S(t) is the proportion of

degree k dual vertices that has S splits. Specifically, we
consider two cases: (i) no degree correlation—the average
probability that a dual vertex has a split neighbor at time
t , φ(t), is the same for all dual vertices; and (ii) general
degree correlation—the average probability that a dual vertex
of degree k has a split neighbor, φ̃(t |k), depends on its degree.

1. DBMF approximation with no degree correlation

If we assume that there is no degree correlation in
the network, then the overall neighbor-contagion rate for

a dual vertex v of degree k can be approximated as
[40,41]

λ
∑

(u,v)∈ED

sgn(Su) 
 λkφ(t), (6)

where φ(t) is the average probability that a dual vertex has a
split neighbor at time t . If there is no degree correlation, φ(t)
is given as [40]

φ(t) =
∑
k′>1

k′P (k′)
〈k〉 (1 − xk′

0 (t)), (7)

where P (k) is the proportion of degree k dual vertices in
the base dual network, and 〈k〉 is the average degree of the
base dual network. The above expression gives the average
probability of finding a split dual vertex following a randomly
chosen dual edge. For simplicity, let

�k
1(t) = η + λk

k−1φ(t)

θ
, �k

2(t) = �k
1(t) + τ

θ
. (8)
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Under the DBMF approximation, the state equations, Eq. (5),
can be simplified as

dxk
0 (t)

dt
= −xk

0 (t)(k − 1)θ�k
1(t) + θxk

1 (t),

dxk
1 (t)

dt
= −xk

1 (t)(k − 2)θ�k
2(t) − θxk

1 (t)

+ xk
0 (t)(k − 1)θ�k

1(t) + 2θxk
2 (t),

dxk
S(t)

dt
= −xk

S(t)(k − 1 − S)θ�k
2(t) − Sθxk

S(t)

+ xk
S−1(t)(k − S)θ�k

2(t) + (S + 1)θxk
S+1(t),

1 < S < k − 1,

dxk
k−1(t)

dt
= xk

k−2(t)θ�k
2(t) − (k − 1)θxk

k−1(t). (9)

We are interested in the stable proportion of dual vertices
of degree k that has i splits [xk

i (t)] when t → ∞, which
corresponds to the stationary distribution of the continuous-
time Markov chain. The stationary distribution can be analyt-

ically solved by setting dxk
S

dt
= 0,∀S = {0,1,2, . . . ,k − 1},∀k.

Solving the system of equations, we obtain for k > 1

xk
i

∗ =
(

k − 1

i

)
�k

1

(
�k

2

)i−1
xk

0
∗
, i = 1,2, . . . ,k − 1, (10)

where �k
1, �k

2 are �k
1(t), �k

2(t), with the φ(t) value taken at
the stationary solution (φ∗). As

∑k−1
i=0 xk

i

∗ = 1, thus

xk
0
∗ =

[
1 + �k

1

�k
2

k−1∑
i=1

(
k − 1

i

)(
�k

2

)i

]−1

=
[

1 + �k
1

�k
2

[(
1 + �k

2

)k−1 − 1
]]−1

. (11)

Solving for φ∗ using Eq. (7), we have

φ∗ = 1

〈k〉
∑
k′>1

k′P (k′)

· −1 + [
1 + η+τ+ λk′

k′−1
φ∗

θ

]k′−1

τ

η+ λk′
k′−1

φ∗ + [
1 + η+τ+ λk′

k′−1
φ∗

θ

]k′−1
.

(12)

The above nonlinear equation can be solved numerically.
Using the solution of φ∗, we can obtain xk

0
∗

and xk
i

∗
.

2. DBMF approximation with the general degree correlation

When considering the general degree correlation, the
overall neighbor-contagion rate can be approximated as

λ
∑

(u,v)∈ED

sgn(Su) 
 λkφ̃(t |k), (13)

where φ̃(t |k) is the average probability that a degree k dual
vertex has a split neighbor. It can be computed using P (k′|k),
the conditional probability of a degree k dual vertex that has a
degree k′ neighbor, as follows [40]:

φ̃(t |k) =
∑
k′

P (k|k′)
(
1 − xk′

0

)
. (14)

P (k′|k) can be evaluated empirically from the actual base
dual network, which incorporates more structural details of
the network. Under this condition, the �k

1(t) and �k
2(t) in the

no-degree-correlation case now become

�̃k
1(t) = η + λk

k−1 φ̃(t |k)

θ
, �̃k

2(t) = �̃k
1(t) + τ

θ
. (15)

It can be shown that the state equation, Eq. (9), still holds, but
with �k

1(t) and �k
2(t) replaced by �̃k

1(t) and �̃k
2(t). The final

stationary solutions can be derived as

xk
i

∗ =
(

k − 1

i

)
�̃k

1

(
�̃k

2

)i−1
xk

0
∗
, i = 1, . . . ,k − 1, (16)

xk
0
∗ =

[
1 + �̃k

1

�̃k
2

[(
1 + �̃k

2

)k−1 − 1
]]−1

, (17)

where �̃k
1, �̃k

2 are �̃k
1(t), �̃k

2(t), with φ̃(t |k) taking the value of
φ̃(∞|k) [φ̃(t |k) value at stationary solution xk

i

∗
].

Under the general degree correlation, there is no simple-
form stationary solution due to the coupling of dual vertices
of different degrees. The state equations for x2

0
∗
, x3

0
∗
, and

x
kmax
0

∗
now all become coupled, as the computation of �̃k

1 and
�̃k

2 involves φ̃(∞|k) and all xk
0
∗
,k = 1,2, . . . ,kmax. However,

xk
i

∗
is still numerically solvable for finite networks; it can

be obtained by solving a large system of nonlinear equations
involving Eqs. (14)–(17) for all dual-vertex degrees.

C. Dual-vertex degree distribution under the stationary solution

Combining the analytical results from the microscopic- and
macroscopic-level models, the expected total numbers of dual
vertices, N∗, and dual vertices of degree k, N∗

k , in the stable
function-augmented dual network are

N∗ = n

kmax∑
k=1

P (k)
k−1∑
S=0

(S + 1)xk
S

∗
, (18)

N∗
k = n

kmax∑
k′=k

P (k′)
k′−1∑
S=0

mk(k′,S)xk′
S

∗
, (19)

where n and kmax are the total number of dual vertices
and the maximum degree in the base dual network. The
expected degree distribution for the function-augmented dual
network under stable conditions can thus be obtained as
P ∗(k) = N∗

k /N∗.

V. NUMERICAL RESULTS

A. Fitting to real-world data

The stationary solution of the vertex split-recovery model
under the DBMF approximation is completely determined by
three key parameters, namely, (i) the normalized network load-
ing level w1(t) = η(t)/θ , (ii) the normalized self-contagion
rate w2 = τ/θ , and (iii) the normalized neighbor-contagion
rate w3 = λ/θ . Here, w1(t) is a dynamic variable that measures
the relative loading level of the entire network; w2 and w3 are
fixed parameters governed by the network structure.

We fit the proposed model to empirical data to uncover
the actual w1(t), w2, and w3 values in the test networks.
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FIG. 6. Evolution of dual degree distributions for (a) the Beijing road network (12/10/2015) and (b) the Shanghai road network (7/11/2016).
The top figures are the road speed plots at three sample time steps. The bottom figures present the corresponding dual-vertex degree
distributions for (i) the base dual network (no congestion), (ii) the function-augmented dual network (actual congestion scenario), (iii) network
configurations predicted by the vertex split-recovery model under different DBMF approximation schemes (no degree correlation and general
degree correlation), and (iv) the power law with exponential cutoff fittings of the dual degree distributions.
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FIG. 7. Fitting result for w1(t) using the DBMF approximation
with the general degree correlation.

The fitting is achieved by minimizing the overall statistical
divergence between the model predicted and empirical dual
degree distributions of the function-augmented dual networks.
Let P ∗

T (k) and QT (k) be the model predicted and empirical

dual degree distribution for time period T . We minimize
the overall statistical divergence of the two distributions
over the entire day, defined as minw1(t),w2,w3

∑
T J (P ∗

T ||QT ),
where J (P ∗

T ||QT ) is the Jensen-Shannon divergence [42]
between distribution P ∗

T and distribution QT . Jensen-Shannon
divergence is a popular measure for evaluating the dissimilarity
between two probability distributions and widely used in
statistics and information theory.

Figure 6 presents sample fitting results of the vertex split-
recovery model (see the Supplemental Material for complete
fitting results [43]). The larger extent of deviation for the
dual-vertex degree distribution under severe congestion vs the
no-congestion condition is clearly shown. It is illustrated that
the vertex split-recovery model captures the expected behavior
of the dual degree distribution of the function-augmented
dual networks for both cities under different congestion
levels. The fitted results for w2 and w3 are found to be
different in the Beijing and Shanghai road networks, but
within the same range. The mean and standard deviation
of w2 and w3 in the Beijing road network under DBMF
with no degree correlation are w̄2 = 0.0744, σ (w2) = 8.3 ×
10−3, w̄3 = 4.3 × 10−4, σ (w3) = 3.3 × 10−4 [w̄2 = 0.0687,
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FIG. 8. Comparison of the total number of dual vertices from empirical data (red line) and the expected total number of dual vertices (N∗)
obtained from the vertex split-recovery model for the Beijing and Shanghai road networks.
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FIG. 9. Comparison of the total number of unrecovered vertex splits at each time step in the empirical data (red line) and the expected
number of vertex splits (NES) obtained from the vertex split-recovery model for the Beijing and Shanghai road networks.

σ (w2) = 0.0109, w̄3 = 3.6 × 10−4, σ (w3) = 2.0 × 10−4 for
DBMF with the general degree correlation]. The values
for the Shanghai road network are w̄2 = 0.125, σ (w2) =
0.015, w̄3 = 5.0 × 10−4, σ (w3) = 7.0 × 10−6 [w̄2 = 0.0915,
σ (w2) = 0.0099, w̄3 = 8.6 × 10−4, σ (w3) = 4.0 × 10−5 for
DBMF with the general degree correlation]. The Shanghai road
network exhibits larger w2 and w3 values than the Beijing road
network does, likely because it has a more decentralized and
homogeneous network structure. The Beijing road network
has a typical ring-and-radial structure, where the major ring
roads and radial expressways have a high traffic capacity,
whereas the Shanghai road network is more gridlike. This
makes congestion overall easier to propagate along the same
or neighboring roads in the Shanghai road network (higher w2

and w3 values).
Figure 7 presents the evolution of fitted w1(t) for a typical

weekday and a weekend for both the Beijing and the Shanghai
road networks. It agrees well with the real-world network
traffic loading level, where high traffic loading in the morning
and evening peaks as well as low traffic loading in off-peak
hours is well captured. Beijing and Shanghai showed slightly

different traffic loading patterns, with higher traffic loading
observed from noon to the early afternoon period (12:00–
17:00) in the Shanghai network. These results show that w1(t)
can be a good measure of the actual traffic loading level at
network scale, which reflects the explanatory power of the
vertex split-recovery model.

To further validate the vertex split-recovery model, we
compare the total number of dual vertices and the vertex splits
between the empirical data and the expected values obtained
from the vertex split-recovery model. The expected number of
vertex splits N∗ is computed using Eq. (19), and the expected
total number of vertex splits NES is computed as

NES = n

kmax∑
k=2

P (k)
k−1∑
s=1

s · xk
s

∗
, (20)

where xk∗
s is the stationary solution of the proportion of

degree k dual vertices that has s splits. The results for
N∗ and NES under the DBMF approximation both with no
degree correlation and with the general degree correlation
are computed. Two metrics, namely, the mean absolute error
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FIG. 10. Impact of w1 on the expected level of functional loss
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k /(k − 1)] for dual vertices of different degrees (w2 = 0.1,
w3 = 0).

(MAE) and mean relative error (MRE), are used for evaluation;
they are computed as

EMAE =
∑n

i=1 |di − d̂i |
n

, EMRE =
∑n

i=1 |di − d̂i |∑n
i=1 di

,

where di is the empirical observation i and d̂i is the value
computed using the vertex split-recovery model. Figures 8
and 9 present the sample results for a typical weekday and a
weekend for both the Beijing and the Shanghai road networks
(for complete results see the Supplemental Material [43]).

The comparison results show that N∗ and NES computed
from the vertex split-recovery model generally agree with the
patterns of empirical data. It is found that for the total number
of dual vertices N∗, the MRE and MAE for the Beijing road
network are less than 2.5% and 150, respectively. For the
Shanghai road network, the MRE and MAE are less than 1.5%
and 80, respectively. For the total expected number of vertex
splits NES, the MRE and MAE for the Beijing road network
are less than 16% and 105, respectively. The MRE and MAE
results for the Shanghai road network are less than 11% and
72, respectively. On weekends, when the traffic loading level

is lower, even smaller MAE and MRE results are achieved for
both cities.

It should be noted that N∗ and NES are obtained using the
stationary solution of the vertex split-recovery model, which
corresponds to a stable network configuration under a constant
traffic loading level after a sufficiently long observation period.
As real-world traffic loading is constantly changing, such a
stable network configuration is not easily achievable. It is
reasonable to expect a certain level of discrepancy between the
empirical data and the predictions of the model. Considering
the relatively low MAE and MRE values, the vertex split-
recovery model provides a reasonably good approximation of
the real-world congestion evolution process.

B. Expected functional loss for dual vertices

There is a minor difference in the dual-vertex degree
distribution results between the DBMF approximation with
no degree and that with the general degree correlation (Fig. 6).
This is because considering the general degree correlation
only improves the approximation of the neighbor-contagion
process. Given that the normalized neighbor-contagion rate
w3 is very low compared with other parameters, the impact of
considering the degree correlation is limited.

As w3 is very small, if we set w3 = 0, we can approximate
the expected number of vertex splits for dual vertices of degree
k (k > 1) under the stationary solution in closed form:

NES
k =

k−1∑
s=1

s · xk
s

∗ ≈ w1(k − 1)(1 + w1 + w2)k−2

1 + w1
w1+w2

[(1 + w1 + w2)k−1 − 1]
.

(21)

When normalized by the maximum possible number of vertex

splits k − 1, it can be shown that NES
k

k−1 � w1+w2
1+w1+w2

and the equal

sign is attainable only when k → ∞. The quantity NES
k /(k −

1) can be perceived as a measure of the expected level of func-
tional loss for dual vertices of degree k, for which NES

k /(k −
1) = 0 indicates that that no congestion is present and a value
of 1 indicates that all segments of the road are congested.

Figure 10 presents the impact of w1 on NES
k /(k − 1) for

dual vertices of different degrees. NES
k /(k − 1) converges to
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FIG. 11. Comparison of network performance under different normalized network loading levels. (a) Impact of w1 on the average probability
that a dual vertex has a split neighbor under the stationary solution (φ∗). Obtained by solving for the stationary solution under the DBMF
approximation with no degree correlation assumption. (b), (c) Plots of the dual degree distributions of the Beijing and Shanghai road networks
under the same set of normalized network loading levels. The light-traffic condition is taken as the typical w1 value in late-night hours; the
heavy-traffic condition is selected as the typical peak-hour w1 value.
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w1+w2
1+w1+w2

as k becomes large. This leads to an interesting
observation: that although high-dual-degree vertices are more
likely to experience vertex split, they seem to converge to
the same level of expected functional loss. In the vertex
split-recovery model, dual vertices with more splits have a
higher recovery rate (more congested segments are likely
to recover), which suppresses dual vertices from further
splitting. This is similar to the existence of the equilibrium
state between the susceptible and the infected population
in the susceptible-infected-susceptible model. One possible
real-world explanation is that, a severely congested road will
lose a considerable fraction of functional connectivity, which
might forbid further entry and propagation of traffic flow; this
in turn could impede the further worsening of congestion.
Another possible explanation is related to the moving jam
effect [44,45], where the road segments get congested and
then recover as the jam moves along the road. In this situation,
although congestion is present, the road maintains a certain
functional level.

C. Network performance

The vertex split-recovery model can serve as a simple but
powerful tool in analyzing network performance under real or

hypothetical traffic loads. Figure 11(a) plots the impact of w1

on the average probability that a dual vertex has a split neighbor
φ∗. A high value of φ∗ corresponds to a heavily congested
network. We find that the Shanghai network performs better
than the Beijing road network under light traffic loading
levels but tends to perform slightly worse under high loading
situations. As mentioned previously, the Shanghai network is
less hierarchical and gridlike, making it more resistive to the
emergence of congestion but, at the same time, opening more
channels for the further propagation of congestion, causing
worse performance at high loading levels. On the contrary, the
Beijing road network depends more on major ring and radial
expressways, which increases the chances of the emergence of
congestion. The existence of high-capacity major roads also
allows for handling a higher traffic volume and the hierarchical
structure reduces potential congestion propagation pathways
under high traffic loading. The differences in the network per-
formances is further reflected in the dual degree distributions
of the function-augmented dual networks. Figures 11(b) and
11(c) present a comparison of the two networks under the same
set of network loading levels. A larger extent of deviation of the
dual degree distribution is observed in the Shanghai network
under high network loading levels compared to the Beijing
road network.

(a) (b)

(c) (d)

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028

w1

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Observed data
=3.279 × w1 + 0.0606    R2 = 0.96803

FIG. 12. Relationship of the parameters of the power law with an exponential cutoff distribution and the fitted w1 value. (a), (b) Linear
fitting of the γ -w1 and κ-w1 relationships for the Beijing road network (12/11/2015). (c), (d) Linear fitting of the γ -w1 and κ-w1 relationships
for the Shanghai road network (7/11/2016).
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Another interesting finding is the close relationship of the
vertex split-recovery model with the emergence of exponential
cutoff behavior in the dual degree distribution. As shown in
Fig. 6, a power law with an exponential cutoff distribution
[P (k) ∼ k−γ e−κk] can serve as an excellent approximation
of the stationary solution of the vertex split-recovery model
for k � kmin (kmin = 3 for Beijing network and kmin = 4 for
Shanghai network). Unfortunately, the complex mathematical
form of the stationary solution forbids the analytical derivation
of this corresponding relationship. However, compared with
the fitted normalized network load level w1 and the parameters
of γ and κ , a remarkably simple linear relationship can be
shown. Figure 12 presents the sample results of the γ -w1

and κ-w1 relationships for the Beijing and Shanghai road
networks. We observe that γ ≈ α0 − α1w1 and κ ≈ α2w1

(the constant term in the κ-w1 linear fitting is relatively
small and can be ignored), where α0, α1, and α2 are positive
constants. This analysis shows that the normalized network
loading level w1 plays a central role, causing the dual-vertex
degree distribution of a function-augmented dual network to
deviate from a power-law distribution and the emergence of
exponential cutoff behavior.

VI. CONCLUSION

Our theoretical analysis, combined with observational data
from two megacities in China, enables examination and
prediction of how functional failures (traffic congestion) and
recoveries evolve in structurally intact road networks. We
have successfully described the deviation of the dual-vertex
degree distribution from a power-law distribution and the
emergence of exponential cutoff behavior under congestion
using a vertex split-recovery model. The model links the
network-level functional loss with the traffic loading level
and provides a statistical characterization of the likelihood
of experiencing functional failures for dual vertices. We also
show that certain network topological features can amplify
network functional failures through negative feedbacks, while
other topological features can suppress congestion cascading.
The evolution of functional failure depends on the interaction
of network topology and loading. The gridlike road network in
Shanghai performs better at low traffic loadings but propagates
congestion at higher loadings. In contrast, the ring-and-radial
structure of the Beijing road network allows higher traffic
volumes but is vulnerable to the emergence of congestion.

Performing functional analysis by overlaying real-world
flow propagation principles on the structural details of flow-
based networks is a challenging problem due to the need to
model flows. Our work provides a new scientific approach to
tackling this complex problem. Instead of analyzing the flow
pattern in the network, we can model the flow-induced func-
tional process as an equivalent structural process. The vertex
split-recovery model is a perfect example showing how traffic
congestion in road networks can be modeled as a structural
process in a transformed graph, which combines both the flow
propagation principle of traffic and the network structure. By
finding appropriate equivalent structural processes for different
types of flow and networks, a similar analytical approach can
be applied to other flow-based networks. Future research can

further explore such equivalent structural processes and de-
velop a generalized theory for flow-based complex networks.
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APPENDIX A: CONSTRUCTION OF A
FUNCTION-AUGMENTED DUAL NETWORK

The vertex split-recovery process is defined in function-
augmented dual networks. We use two procedures to construct
the function-augmented dual network at each time step. We
first construct the base dual network using the hierarchi-
cal intersection continuity negotiation (HICN) dual-mapping
technique [25]. HICN dual mapping merges consecutive road
segments into the same dual vertex if they belong to the same
road class and the convex angle they form is close to 180◦.
Details of the HICN dual-mapping procedure can be found in
Algorithm I. Once the base dual road network is constructed,
we overlay the functional states on the network and perform
functional dual mapping to track the split-recovery trajectory
for each dual vertex at each time step. Details of the functional
dual-mapping procedure can be found in Algorithm II.

Algorithm 1: HICN dual-mapping procedure.

1. Scan the primal network, and put all primal edges into the
unused edge set EN . Let the used edge set EU = ∅, dual vertex
set VD = ∅, and dual edge set ED = ∅.

2. If EN �= ∅, pick a primal edge eP from EN and create a
candidate edge eCD = eP ; otherwise, go to step 4.

3. Grow eCD by recursively executing the following until eCD

cannot be extended further:
(a) Inspect the two end points of eCD . For each end point, if it

connects to any edge e ∈ EN , compute the convex angle θi

for eCD and ei .
(b) Merge eCD and ei if the following conditions are satisfied:

i. eCD and ei are of the same road class.
ii. θi = max{θ1,θ2, . . . } and θi<θmax, where θmax is the

predefined maximum threshold angle (π/3 used in
the actual implementation).

(c) If eCD and ei can be merged, then
eCD ← eCD

⋃{ei}, EN ← EN \ ei ,
EU ← EU

⋃{ei}.
4. Create the dual vertex vD = eCD and let

VD ← VD

⋃{vD}. Go back to step 2.

5. Construct the dual-mapped network. For every two dual
vertices vDi

and vDj
represented as a set of primal edges, if

they contain primal edges that intersect each other, construct a
dual edge eDij

between vDi
and vDj

.
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Algorithm 2: Functional dual-mapping procedure.

1. Create the base dual road network G0
D(V 0

D,E0
D) using

Algorithm I.

2. At time step t , for each dual vertex vt−1
Di

∈ V t−1
D :

(a) Let V t
D = ∅, Et

D = ∅.
(b) Scan the functional state of each primal edge contained

in vt−1
Di

:

i. If any primal road segments are in a failed state
(congested), split the dual vertex vt−1

Di
into a set of

new dual nodes VS = {V t
Di1

, . . . ,V t
Dis

} at the
locations of the failed road segments. Set
V t

D ← V t
D

⋃
VS .

ii. Otherwise, set vt
Di

= vt−1
Di

. Set V t
D ← V t

D

⋃{vt
Di

}.
3. For all dual vertices ṼDi

= {vt
Di1

,vt
Di2

, . . . ,V t
Dis

} that originally
evolved from v0

Di
, check the primal edges in the working state

(not congested) that are contained in v0
Di

but not in dual
vertices in ṼDi

. Merge the dual vertices at the location of such
primal edges and update the dual vertices in ṼDi

as well as V t
D

accordingly.

4. Build the dual-mapped network Gt
D(V t

D,Et
D). For each pair of

dual nodes vt
Di

and vt
Dj

in V t
D , add a dual edge eDij

to Et
D if vDi

and vDj
share a common primal vertex.

APPENDIX B: DERIVATION OF THE RECURSIVE
FORMULATION FOR THE MICROSCOPIC-LEVEL

MODEL

For S > 1 and i = 1,2, . . . ,k − S − 1, it can be proved that
the following recursive formulation holds for the expected
number of split subvertices of degree i for a dual vertex of
degree k after S splits:

mi(k,S + 1) = k − S − i

k − S − 1
mi(k,S)

+ 1

k − S − 1

k−S∑
s=i+1

(s − 1)ms(k,S)mi(s,1).

(B1)

Proof. Consider a dual vertex of degree k after S splits (re-
move the effect of historical vertex recoveries). If we perform
one more split (suppose that S < k − 1), the probability of
selecting a leaf vertex of degree s is

ms(k,S) · s − 1

k − S − 1
,

as the probability of selecting a leaf vertex of degree s is
proportional to s − 1. Splitting this vertex will decrease the
expected number of leaf vertices of degree s by 1 but increase
the expected number of leaf vertices of degree other than s by
M(s,1). Hence the expected change in M after splitting this
vertex is

�M
s = ms(k,S) · s − 1

k − S − 1
[M(s,1) − Es],

in which Es is a vector where only the sth element is 1,
and all others are 0. The expected number of subvertices of
different degrees for a dual vertex of degree k after S + 1 splits

can be obtained by summing �M
s for all possible s values

(s = 1,2, . . . ,k − S):

mi(k,S + 1) = mi(k,S) +
k−S∑
s=1

�M
s

= k − S − i

k − S − 1
mi(k,S)

+ 1

k − S − 1

k−S∑
s=i+1

(s − 1)ms(k,S)mi(s,1).

We hence obtained the recursive formulation for computing
mi(k,S). Note that in the above derivation, we have used the
fact that mi(s,1) = 0 for i � 0. �

APPENDIX C: CLOSED-FORM SOLUTION
OF EQ. (3) UNDER β = 0

The closed-form expression of the recursive formulation,
Eq. (3), is not known. However, the reduced uniform split case
β = 0 can be analytically derived as follows:

mi(k,S) =
{

S(S+1)
k−S

∏S−1
j=1

(
1 − i

k−j

)
, i � k − S;

0, i > k − S.

(C1)

Proof. If β = 0, then we have uniform split, that is, P (i,k −
i|k) = 1/(k − 1), and

mi(k,1) =
{

2
k−1 , i < k;

0, i � k.

We prove the validity of the closed-form expression using
induction. When S = 1, the expression obviously holds.
Assume that the expression holds for S � c; then

mi(k,c + 1) = k − c − i

k − c − 1
mi(k,c)

+ 1

k − c − 1

k−c∑
s=i+1

(s − 1)ms(k,c)mi(s,1)

= k − c − i

k − c − 1
mi(k,c) + 2

k − c − 1

k−c∑
s=i+1

ms(k,c).

As

ms(k,c) = c(c + 1)

k − c

c−1∏
j=1

(
1 − s

k − j

)

= c(c + 1)
∏c−1

r=1(k − r − s)∏c
j=1(k − j )

,

k−c∑
s=i+1

ms(k,c) = c(c + 1)∏c
j=1(k − j )

×
k−c∑

s=i+1

c−1∏
r=1

(k − r − s).
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Let

Fs =
c−1∏
r=1

(k − r − s), Gs = s · Fs.

Thus

Fs+1 = k − (c − 1) − (s + 1)

k − 1 − s
Fs = k − c − s

k − s − 1
Fs.

Then

kFs+1 − (s + 1)Fs+1 = (k − c)Fs − s · Fs.

We have

kFs+1 − Gs+1 = (k − c)Fs − Gs.

Summing the cases for s = i + 1 to k − c,

k

k−c∑
s=i+1

Fs+1 −
k−c∑

s=i+1

Gs+1 = (k − c)
k−c∑

s=i+1

Fs −
k−c∑

s=i+1

Gs.

Note that Fk−c+1 = 0, Gk−c+1 = 0, thus

k−c∑
s=i+1

Fs+1 =
k−c∑

s=i+1

Fs − Fi+1,

k−c∑
s=i+1

Gs+1 =
k−c∑

s=i+1

Gs − Gi+1.

Thus

c

k−c∑
s=i+1

Fs − kFi+1 + Gi+1 = 0,

and
k−c∑

s=i+1

Fs = k − i − 1

c
Fi+1.

Consequently,

mi(k,c + 1) = k − c − i

k − c − 1
mi(k,c) + 2c(c + 1)∏c+1

j=1(k − j )

·k − i − 1

c

c−1∏
r=1

(k − r − i − 1)

= c(c + 1)
∏c

r=1(k − r − i)∏c+1
j=1(k − j )

+ 2(c + 1)
∏c

r=1(k − r − i)∏c+1
j=1(k − j )

= (c + 1)(c + 2)

k − c − 1

c∏
j=1

(
1 − i

k − j

)
.

We have proved that the proposed expression also holds for
mi(k,c + 1); by induction, the claim holds. �
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