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A Graph-Based Approach to Measuring the
Efficiency of an Urban Taxi Service System
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Abstract—Taxi service systems in big cities are immensely com-
plex due to the interaction and self-organization between taxi
drivers and passengers. An inefficient taxi service system leads
to more empty trips for drivers and longer waiting time for
passengers and introduces unnecessary congestion on the road
network. In this paper, we investigate the efficiency level of the
taxi service system using real-world large-scale taxi trip data.
By assuming a hypothetical system-wide recommendation system,
two approaches are proposed to find the theoretical optimal strate-
gies that minimize the cost of empty trips and the number of
taxis required to satisfy all the observed trips. The optimization
problems are transformed into equivalent graph problems and
solved using polynomial time algorithms. The taxi trip data in
New York City are used to quantitatively examine the gap between
the current system performance and the theoretically optimal
system. The numerical results indicate that, if system-wide in-
formation between taxi drivers and passengers was shared, it is
possible to reduce 60%–90% of the total empty trip cost depending
on different objectives, and one-third of all taxis required to serve
all observed trips. The existence of destructive competition among
taxi drivers is also uncovered in the actual taxi service system.
The huge performance gap suggests an urgent need for a system
reconsideration in designing taxi recommendation systems.

Index Terms—Taxi service system, large-scale trip data, effi-
ciency, graph theory, minimum weight perfect bipartite matching,
minimum path cover.

I. INTRODUCTION

THE rapid deployment of various mobile sensors have
steadily increased the quantity of data available in various

systems, documenting the movements of people, bits, and ideas
at a rate that was unimaginable before. The ability to collect,
interact and analyze massive streaming data has unambiguously
transformed our understanding of many extremely complex
systems that were impossible to be completely modeled before.
Instead of a static snapshot of the underlying phenomenon,
technology equipped networked agents provide disaggregate
data of their location and state allowing the characterization of
dynamics of the system.

In urban systems, taxis serve as an indispensable mode of
transportation for point-to-point travel. Typical urban areas
picking up and dropping off. By the end of 2013, there were
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13 437 yellow medallion taxicabs in New York City (NYC)
that transport more than 236 million passengers [1]. In Hong
Kong, there are about 15 000 taxicabs and more than a million
passengers served everyday [2]. While up to 60% of the daily
traffic flow in Hong Kong are generated by taxis, there are
significant number of empty trips [3]. The excessive empty
trips increase the waiting time for passengers and the avoidable
operating cost for drivers, which eventually lead to a series of
negative externalities, such as urban congestion and emissions
[4]. Maintaining a high system operational level and increasing
utilization of the taxi service system are of key concerns faced
by many cities.

Previous approaches address the inefficiency issue of the taxi
service system at the aggregate level (total demand and sup-
ply), where economic relationships are considered to determine
the optimal fare setting and fleet size [3], [5]–[8]. All these
studies provided a preliminary direction to enhance the system
performance by introducing entry and fare controls to the taxi
market. The limitation, however, comes from the unrealistic
assumption of the taxi driver and passenger’s behavior and
the inability to fully characterize the taxi service system using
overly abstracted mathematical models. The taxi service system
is an immensely complex self-organized system: drivers are
self-adaptive based on their own knowledge of the traffic, and
the passenger demand is both spatially and temporally varying.
For example, drivers are likely to roam near residential areas
during morning peak and wait at the concert when approaching
the end of a play. The inefficiency of the system arises, even
when the market is properly regulated, due to the lack of
perfect system-wide information shared between taxi drivers
and passengers.

Taxis in urban areas such as NYC are equipped with GPS
devices, providing second by second location information.
The unprecedented amount taxi trip data generated from GPS
equipped taxis allow researchers to directly observe and analyze
the system performance and recommend various taxi related
services. Further, taxis serve as probes in the road network and
provide massive amounts of streaming data, and the analysis of
which provides important performance metrics to understand
causal factors for taxi ridership [9], dynamics of taxi demand
[10], [11] and to estimate real-time speed [12], [13]. Conse-
quently, new approaches emerge, such as dispatching system,
taxi recommendation and ridesharing applications, which uti-
lize the real-time trip information or historical taxi trip data to
provide various user services [14]–[21]. By clustering historical
pick-up locations based on temporal and spatial characteristics,
guidances are provided to help drivers reduce the number of
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empty trips. The cruising distance before finding a passen-
ger can be reduced by learning from experienced drivers and
making a sequence of recommendations [16]. Yamamoto et al.
[17] proposed a fuzzy clustering and adaptive routing algorithm
to dispatch vacant taxis to places where passengers are more
likely to be found. In addition to aid taxi drivers, Yuan et al.
[18] also incorporated passengers’ mobility patterns and taxi
driver’s pick up/drop off behaviors to provide recommendations
for passengers to reduce disequilibrium between the demand
and supply. Apart from improving the taxi services through dis-
patching passenger and vacant taxis, or providing guidance to
taxi drivers, ridesharing services is another way to reduce con-
gestion and energy consumption. Several works on ridesharing
systems [19]–[21] have been developed with the consideration
of time, capacity and monetary constraints. Despite the tech-
nological advances in ridesharing services, non-technical prob-
lems remain, such as legitimate issues as well as security issues
[14]. However, a fundamental scientific question to be answered
is how efficient is the current taxi service system, and how to
quantitatively evaluate the performance level of the current sys-
tem. Moreover, if the optimal performance of the taxi service
system can be quantitatively measured, how far is the perfor-
mance gap between the current system and the theoretical opti-
mum? The inefficiency arises largely due to the lack of globally
shared information among taxi drivers and passengers. In addi-
tion, the local greedy choices that drivers make to pick up pas-
sengers could also result in system wide inefficiencies. While
some drivers or passengers may benefit from the aforemen-
tioned taxi dispatching and recommendation schemes, whether
the efficiency of the entire system is improved remains ques-
tionable. Intervention strategies without considering system-
level efficiency may lead to downgraded system performance.

In this article, we evaluate the efficiency level of the taxi ser-
vice system and quantitatively measure the theoretical optimal
performance of the system. We analyze the entire taxi service
system using equivalent graph representations. The dataset used
in this study contains over 500 000 daily trip records from the
real world, which is an ideal source to inspect the interaction
between taxi drivers and passengers. The system efficiency
is explored following two schemes: (1) the optimal matching
and (2) the trip integration. Given the sets of available taxis
and passengers within a time interval, the optimal matching
provides the best matching strategy between vacant taxis and
possible passengers. For solvability, this is transformed to a
minimum weight perfect bipartite matching problem. On the
other hand, given the information for a set of taxi trips, the trip
integration finds the optimal integration strategy of sequences
of trips for the taxis in the system, which is shown to be equiv-
alent to a minimum path cover problem. Our results suggest
that the taxi service system of New York City has a significant
performance gap compared with the theoretical optimal sys-
tem due to the lack of system wide information shared between
drivers and passengers. While there are other factors that may
prevent from attaining the theoretical optimum, this provides
a clear benchmark of the potential efficiency gains that can be
realized by introducing new technology that allowing sharing
system-wide information in the taxi system. Furthermore, if
perfect information is provided, only two thirds of all taxis are

sufficient to serve all observed trips and under certain scenarios,
up to 90% of total empty trip cost may be reduced.

The rest of the paper is structured as follows. The next section
describes the data used for this paper; Section III presents the
methodological approach developed to find the theoretically
optimal strategy; Section IV shows the experiment results and
the concluding remarks are given in the final section.

II. DATA

The data used in this research were collected by the
New York City Taxi and Limousine Commission (NYCTLC)
on the trip by trip basis. The data contain the taxi medallion ID,
driver initial, shift number, the timestamp and GPS coordinates
of trip origin and destination, trip duration, travel distance and
fare etc. Around 400 000 to 500 000 daily trips were recorded
during the data collection period from December 2008 to
January 2010. Observing the stable trip pattern during week-
days and weekends [22], one-week data from October 5th,
2009 to October 11th, 2009 were extracted for further analysis,
in which no major social events were reported. We focus
on investigating the efficiency of the taxi service system us-
ing three days’ data from this week (Wednesday 2009-10-07,
Friday 2009-10-09 and Saturday 2009-10-10).

A. Data Pre-Processing and Macroscopic Characteristics

There are more than 13 000 medallion cabs in NYC
(NYCTLC, 2012), but only 818 unique medallion IDs are found
in the data, which is far from the right number. Analysis on the
data have shown extensive reuse of the same medallion ID num-
bers for different taxis exists in the dataset. In the data, a specific
medallion ID is associated with multiple driver initials and shift
numbers. It has been observed that multiple trip records with
the same medallion ID but with different shift numbers and
driver initials can occur at the same time. Consequently, the
medallion ID is not a reliable identifier for taxis in the dataset.
To be rigorous, this study used the concatenated string of taxi
medallion ID, driver initial and shift number as the unique
taxi identifier (referred as taxi identification number). For the
weekday data, we observe a total of 489 234 trips within a
day, and 32 368 (6.6% of the total number of trips) distinct
taxis identification numbers are recovered. For the weekend
data (Saturday), 33 999 taxis are recognized from the 524 792
trips. Considering that there are usually two to three daily shifts
per taxi [1], the amount of observed unique taxi identification
numbers suggests a range of 11 000 to 17 000 medallion cabs
in NYC, which agrees with the reported number of 13 000 by
NYCTLC [1].

All trips under a same taxi identification number were re-
trieved and sorted based on trip starting time. The empty trip
information was obtained by comparing the consecutive drop-
off and pick-up locations and timestamps. For each taxi, since
it is hardly possible to gain information prior to its first trip
(referred to as starting trip in following content), only the drop-
off location of the first trip is utilized and served as the initial
position of the taxi. Some of the related macroscopic statistics
of the taxi trip data, including the distribution of average trip
speed and taxi idle time are presented in Fig. 1.
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Fig. 1. Related macroscopic statistics of the taxi trip data. (a) Distribution of average trip speed. (b) Distribution of taxi idle time.

Fig. 2. Illustration of taxicab metric.

B. Distance Measure

Due to the lack of detailed trajectory information in the data,
the actual vacant travel distance between successive trips is
unknown. One may approximate the empty trip distances as
the great-circle distance between successive trip destination
and origin computed using haversine formula. However, this
method ignores the actual path taken of a taxi and hence
underestimate the real empty trip distance. Instead, in this study,
we approximate the empty trip distance using taxicab metric
(also known as city block distance, Manhattan distance), which
achieves higher level of accuracy by fully exploit the special
grid-like road network structure in NYC. Fig. 2 illustrates
computation of taxicab metric. A rectangular boundary is first
constructed using the starting and ending locations under the
orientations of the two major axis (obtained by analyzing the
orientation of the entire road network data of NYC). The great-
circle distances of the two edges of the rectangle boundary are
then computed using haversine formula, the sum of which gives
the taxicab metric of the empty trip. Note that under a grid
structured road network, as long as the trajectory of the empty
trip falls within the defined rectangular boundary, its distance
will always be the same as taxicab metric.

III. METHODOLOGY

This section presents the details of the two approaches used
to evaluate the efficiency of the taxi service system, namely
the optimal matching and the trip integration. Consider the
following two aspects of the efficiency in the taxi service
system:

• If the information of trip starting time and location for
each passenger, and the current location of each available
taxi is known within a time interval, how to match the
given set of vacant taxis and the passengers so that the
total time/distance or revenue loss are minimized?

• If a given set of taxi trips are known beforehand, how to
combine a sequence of trips served by individual taxis to
achieve the minimum utilization of the number of taxis
and lower the total trip cost?

The first research question focuses on the issue that taxi
drivers have to spend too much time or travel extra miles than
actually needed to find the next passenger. The second research
question is particularly meaningful if there is a high demand
for taxis while the supply is very limited, such as during peak
hours. Apparently, the system efficiency will be improved by
addressing either of the two problems. The optimal matching
provides an optimal solution for the first scenario while the
second one is addressed by the trip integration.

A. Assumptions

There are four major assumptions related to the methodology:

1) There exists a hypothetical system-wide recommenda-
tion mechanism (e.g. an Uber-like taxi hailing APP but
adopted by all users in the system) for conducting the op-
timal matching and trip integration for every time interval
T with a length of ΔT , within which the information
of both taxis and passenger trips are revealed at the
beginning of the time interval.

2) The starting trips are only considered as a starting point
and are not involved in the matching cost computation.

3) All trip observations must be served at the exact time and
location as recorded in the data.
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4) The travel distance between consecutive trips (empty
trip distance) is computed in taxicab metric rather than
the actually travel distance, due to the lack of detailed
trajectory information and the large size of the data.

In this study, the reason for discretizing time into intervals is
to mimic the operation behavior of many real taxi recommenda-
tion and dispatching systems. Such systems typically discretize
time into a set of “batching windows,” where the information
from both available taxis and passengers is collected inside each
batching window and then used to make trip recommendations.
The optimal matching requires a short ΔT , while a longer ΔT
is expected to have enough trips for the integration.

B. Notation

The notations used in the mathematical formulations are
given as follows:

T Index of the current time interval, T ∈ {1, 2,
3 . . . ,T}.

ΔT Length of the time interval.
AT The set of all available taxis at time interval T .

All taxis finish serving a trip within T are seen
as available, except the observed last trip of a
taxi. Each available taxi in AT is represented as
a tuple: (i, pai , t

a
i ), corresponding to the taxi iden-

tification number, location and timestamp when
available (end point and timestamp of last trip),
the superscript a refers to “available taxi.”

BT The set of trips to be served in interval T .
Each trip in BT is represented as a tuple:
(j, poj , t

o
j , p

d
j , t

d
j ), corresponding to the trip ID,

location and timestamp of trip origin, location
and timestamp of trip destination respectively.
The superscript o and d refer to the origin and
destination respectively.

RT The set of unmatched taxi in time interval T . The
cardinality of RT is |RT | = |AT | − |BT |.

M A sufficient large number.
zTij A possible matching between taxi i ∈ AT and trip

j ∈ BT .
dTij The Manhattan distance of the matching between

pai and poj .
α, β Cost coefficients for the time and distance of

empty trips.
wT

ij Cost for matching taxi i ∈ AT and trip j ∈ BT .
G(V,E) Graph notation with the set of vertices V = {vk}

and the set of edges E = {eij}.
cTij Capacity of edge eij ∈ E.
vmax Maximum travel speed for matching. Set as

20 mile/hour in actual implementation according
to Fig. 1(a). The value covers 90% of all trips
observed without being too conservative.

C. Optimal Matching

Given the time interval ΔT (assumed to be small enough
such that no more than one complete trip is finished during the

interval), the objective of the optimal matching is to find the
optimal matching strategy between each pair of taxi driver and
passenger, so that the total matching cost is minimized. The
matching cost can be measured as the taxi idle time, empty trip
distance or revenue loss, which is the weighted combination of
the previous two. It can be interpreted as a proxy of the empty
trip cost spent by a taxi driver in finding the next passenger. We
will use the term “matching cost” and “empty trip cost” inter-
changeably in the following discussion. The optimal matching
problem for each interval T = 1, 2, . . . ,T can be formulated as
the following integer linear program (ILP):

Min
∑
ij

wT
ij z

T
ij , i ∈ AT , j ∈ BT

⋃
RT (1)

s.t.
∑
i

zTij = 1, i ∈ AT (2)

∑
j

zTij = 1, j ∈ BT
⋃

RT (3)

wT
ij =

{
α
(
toj − tai

)
+ βdTij , if j ∈ BT

M, o.w.
(4)

zTij ∈ {0, 1}. (5)

Equations (2) and (3) ensure the one to one mapping (perfect
matching) between taxis and trips. Equation (4) defines the
matching cost. Equation (5) restricts zTij to be a binary variable.
zTij = 1 if a matching exist, and 0 otherwise. A matching is
valid (matching cost wT

ij is finite) if and only if the following
conditions are satisfied:

toj ≥tai (6)

dTij ≤
(
toj − tai

)
vmax. (7)

Equation (6) states that the taxi available time tai should be
no later than the trip starting time toj . Equation (7) sets the
maximum possible distance in taxicab metric between available
taxi location and trip starting location for a valid matching.

If we abstract the set of taxis and the set of trips as two
sets of vertices, and the set of valid matching as the set of
edges, the ILP problem can be represented as a bipartite graph
as illustrated in Fig. 3(a). Red vertices are the available taxis
and black vertices represent the trips to be served. Moreover,
there is a cost wT

ij associated with each pair of matched taxi
and passenger trip, which is considered as the weight of the
corresponding edge. We can show the ILP is equivalent to the
minimum weight perfect bipartite matching problem illustrated
in Fig. 3(b).

Definition 1: Given a bipartite graph G = (V,E) with bi-
partition S and T (V = S

⋃
T ) and weights wij for all edges

eij ∈ E (E = S × T ), a bipartite matching is a subset of
edges M ⊆ E, such that for all vertices v ∈ S

⋃
T , at most one

edge of M is incident on v. A matching is perfect if no vertex
is exposed. The minimum weight perfect bipartite matching
is to find a perfect matching of minimum cost.

From above definition, it can be easily verified that the
ILP defined by Equations (1)–(5) is exactly equivalent to the
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Fig. 3. Graphical representation of trip matching.

minimum weight perfect bipartite matching problem. Note that
the optimal matching problem has a nonempty feasible solution
set, as at least one matching (the one in real world) exists for the
problem. Hence the given problem is always solvable, and there
is at least one available taxi for each trip (indicates |A| ≥ |B|,
and |RT | = |AT | − |BT |), thus the perfect matching is always
well defined. Note that when applied to real world cases, the
perfect matching may not always exists, as |A| < |B| may
occur. However the problem can still be solved as a minimum
weight maximum bipartite matching problem. Essentially,
this is a reduced problem of optimal matching proposed in
the paper, as we do not need the set of unused taxis and the
matching needs not to be “perfect,” which is easier to solve. The
Hungarian method [23] is known to solve the class of minimum
weight bipartite matching problem, which has a complexity of
O(|V |3) [24]. For more information about minimum weight
bipartite matching and the Hungarian method, please refer
to [25].

By solving the optimal matching problem and obtain the
optimal solution zT

∗
ij , the optimal matching strategy can be

retrieved and the set of available taxis AT is updated for the
next interval T + 1 as follows:

1) If j ∈ BT , then taxi i is matched to trip j. If trip j is not
the last trip of a taxi, set tai′ = tdj and pai′ = pdj , where i′ ∈
AT̃ and T̃ is the time period tdj belongs. The optimized
empty trip idle time and distance are computed as t∗k =
toj − tai and d∗k = dij.

2) If zT
∗

ij = 1, j ∈ RT , then taxi i is not matched to any trip
and is kept for next time interval. Set tai′ = tai and pai′ =
pai , where i′ ∈ AT+1.

For each trip k = 1, 2, 3, . . . , nT , in which nT is the total
number of trips for time interval T , the total matching cost is
calculated as:

T∑
T=1

nT∑
k=1

αt∗k + βd∗k. (8)

Specifically, if:

1) α = 1, β = 0: the objective is to minimize the total taxi
idle time;

TABLE I
LINEAR REGRESSION MODEL FOR TAXI
FARE-TIME-DISTANCE RELATIONSHIP

2) α = 0, β = 1: the objective is to minimize the total empty
trip distance;

3) α = α0, β = β0: the objective is to minimize the total
revenue loss from empty trips, where α0, β0 are the cost
coefficients of time and distance components.

We use a simple linear regression model for taxi fare with the
dependent variable of the travel time and distance to measure
the empty trip cost. The linear regression model was built using
415 561 taxi trip records and presented in a previous study of
the author [12]. The linear model fits the data well, with highly
significant parameters and a R2 = 0.99. The model is presented
as follows and the results are presented in Table I:

fare = α0 · time + β0 · distance. (9)

D. Trip Integration

Given a time interval ΔT and a set of observed trips, the
objective of the trip integration is to find an optimal trip com-
bination (integration) strategy that: (1) results in the minimum
number of taxis required to satisfy all the trips (unweighted trip
integration); and (2) results in minimum total matching cost
while achieving minimum possible number of taxis satisfying
all the trips (weighted trip integration). The notion of trip inte-
gration is different from the usual trip merging or combination
in ridesharing problems [26]. The ridesharing problem typically
focuses on combining multiple taxi trips on a similar path using
a shared taxi. However, we focus on integrating successive trips
for each individual taxi and the taxi sharing behavior is not
considered, as it is not revealed in the real-world taxi trip data.
The trip integration can be especially beneficial in cases such
as peak hours, when the available taxis are not sufficient to
address the overflow of passenger trips. By introducing the trip
integration, the resources for taxis will be fully utilized and the
system output is maximized.

For trip integration, a longer ΔT (e.g., 10 min) is needed
compared with the optimal matching. Since small ΔT will
result in fewer trips for integration, which may lead to limited
improvement to the system. We assume at the beginning of
each time interval, all passengers provide their trip information
and the trip travel times are known (in this paper) or can be
accurately estimated (in real world implementations). Two rules
are introduced to verify if the two trips (i, poi , t

o
i , p

d
i , t

d
i ) and

(j, poj , t
o
j , p

d
j , t

d
j ) are possible to be combined (integrated), and

we call such trips combinable trips if:

1) 0 ≤ toj − tdi ≤ ΔD, where ΔD is the maximum delay
allowed;

2) dTij ≤ (toj − tdi )vmax, that the taxi is possible to reach the
passenger given the observed distance and time.
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Fig. 4. Illustration of Unweighted Trip Integration. (a) G(V, E).
(b) G′(V ′, E′). (c) G′′(V ′′, E′′). (d) G′′′(V ′′′, E′′′).

In order to formulate and solve the described optimization
problems, we transform the original problems into correspond-
ing graph problems. Particularly, we will consider two cases:
(1) unweighted trip integration, which finds the minimum num-
ber of taxis required to satisfy all the trips; and (2) weighted trip
integration, which finds the minimum total matching cost while
achieving minimum possible cardinality set of taxis to satisfy
all the trips.

1) Unweighted Trip Integration: We first transform the un-
weighted version of the problem into a graph representation.
Let the abstracted vertex voi = (poi , t

o
i ) and vdi = (pdi , t

d
i ) as the

origin and destination location and time tuple of trip i. For each
trip, there is an edge connecting voi and vdi . Furthermore, we
add an directed edge between vdi and voj if trip i and trip j are
combinable (represented as dash line in G(V,E) of Fig. 4(a)).
Hence the original unweighted trip integration problem is to
find a set of connecting edges between trips that form a set of
disjoint paths covering all the trips with the minimum cardinal-
ity. If we abstract each trip as a single vertex, let vi = (voi , v

d
i ),

and only consider the directed edges that connects combinable
trips, then we obtain the directed graph G′(V ′, E′) shown in
Fig. 4(b). It can be shown that the unweighted trip integration
problem is equivalent to find a minimum path cover on G′.

Definition 2: Given a directed graph G = (V,E), the mini-
mum path cover is to find the minimum number of paths such
that every vertex v ∈ V belongs to exactly one path. Zero length
path is allowed, which is a single vertex.

The equivalency between unweighted trip integration and
minimum path cover is straightforward. Since a path is con-
structed only when every consecutive trip vertices belongs to
it are combinable trips. The minimum path cover finds a set of
paths that ensure every vertex belongs to a disjoint path, thus all
the trips are served, and each trip is served by exactly one taxi.
The cardinality is minimal, thus we find the minimum number
of taxis that serve all the required trips. The paths found by the
minimum path cover will be the optimal integrated trips.

Although the minimum path cover problem is NP-hard in
general (as a path cover has cardinality 1 if and only if the
directed graph has a Hamiltonian path, which is a NP-complete
problem), it is solvable in polynomial time on directed and
acyclic graphs. For our problem, since the directed edges con-
nects combinable trip vertices, and by the definition of combin-
able trips, along any existing path, the trip origin timestamp toi
will always be increasing. Consequently, the equivalent directed
graph G′ will never become cyclic. To solve the minimum path
cover problem defined on graph G′, we create a equivalent bi-
partite graph G′′(V ′′, E′′) as shown in Fig. 4(c). To perform the
transformation, we partition all vertices vdi and voi into two sets.
The edges that connect the combinable trips between vdi and voj
are also included. It can be shown that by solving a maximum
bipartite matching on G′′, we solve the minimum path cover
problem. To see this, we introduce following definition and
proposition:

Definition 3: A maximum matching is a matching M on
G(V,E) such that every other matchingM ′ satisfies |M ′|≤|M |.

Proposition 1: The directed bipartite graph G′′(V ′′, E′′) has
a matching of size n− k (n = |V ′|) if and only if there are k
directed paths covering all the vertices in G′.

Proof: Assume the directed acyclic graph G′(V ′, E′) has
a path cover P of size k, and let P1, P2, . . . , Pk be the k paths.
Hence in the transformed bipartite graph G′′, for each path Pi,
there will be |Pi| − 1 matching edges used. Then there is a

matching of size
∑k

i (|Pi| − 1) =
∑k

i |Pi| − k = n− k.
On the other hand, if G′′ has a matching of size n− k, then

it will form m disjoint paths P1, P2, . . . , Pm and l isolated
vertices (both voi and vid are not connected to any other vertices)
in G′. Hence these disjoint paths and isolated vertices will form
a path cover P on G′. Since

∑m
i |Pm|+ l = n and

∑m
i (|Pi| −

1) =
∑m

i |Pi| −m = n− k, thus m+ l = k, and P is a path
cover of size k. �

A well-known solution approach for maximum bipartite
matching is to use the max-flow algorithm with a simple graph
transformation [27], which is shown in Fig. 4(d). We add
dummy source and sink nodes s, t that connect to all vdi and voi
respectively, and set capacity of all edges to be 1. Solving the
max-flow problem on G′′′ between s and t will find the max-
imum bipartite matching on G′′. According to Proposition 1,
finding the maximum matching on G′′ will lead to the minimum
size of path cover on G′ (maximize n− k is equivalent to mini-
mize k). Hence the unweighted trip integration problem can be
efficiently solved using polynomial time max-flow algorithm,
specifically, if the Edmonds and Karp algorithm [27] is used,
the computation complexity is O(|E′′ |2).

2) Weighted Trip Integration: If we consider each edge e′ij ∈
E′ in Fig. 4(b) to be associated with the weight wT

ij , then
the problem of finding the minimum number of taxis can be
extended to the problem of finding the minimum total matching
cost using the least number of taxis. The equivalent graph of this
problem is similar to the unweighted case with the adding of
weights on edges, which is presented in Fig. 5(a). The objective
is to minimize the total weight on the set of disjoint paths
that cover all abstracted trip vertices, hence is equivalent to a
minimum weight minimum path cover problem.
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Fig. 5. Illustration of Weighted Trip Integration. (a) G′
w(V ′

w , E′
w).

(b) G′′
w(V ′′

w , E′′
w).

Definition 4: Given a directed graph G = (V,E), the mini-
mum weight minimum path cover is a minimum path cover
P that minimize the sum of the weights of the edges of paths of
P , that is

∑
Pi∈P,i=1,2...,|P |

∑
e∈Pi

w(e).
To solve this problem, simply transforming into a max-flow

problem is not applicable. However, it is observed that the edges
for matching on the bipartite graph G′′

w also correspond to the
edges in the path cover on G′′

w. As shown in Proposition 1,
finding a maximum matching will lead to a minimum path
cover, hence a minimum weight maximum matching on the
graph will correspond to the minimum weight minimum path
cover problem [28]. Consequently, we can transform the graph
G′

w(V
′
w, E

′
w) into a complete bipartite graph G′′

w(V
′′
w , E

′′
w) il-

lustrated in Fig. 5(b), and instead solve a minimum weight
maximum bipartite matching problem on G′′

w. In G′′
w, if the

two trips are combinable, we use the same weight computed
in Equation (4) on edges that connect vdi and voj if the two trips
are combinable. For all other edges, we assign the weight to be
infinite (a sufficient large numberM in actual implementation).
The Hungarian method can again be used to solve the problem.
By removing the matching edges that contain the weight of M
from the result, we arrive at the final solution that corresponds
to the minimum weight minimum path cover problem.

IV. EXPERIMENT RESULTS

In this section, experiment results of the theoretical optimal
system performance are presented for both optimal matching
and trip integration. The results are carried out using the real
world large-scale taxi data in NYC. The main idea of the ex-
periment is to ensure all taxi trips are served at exactly the
same time and location as in the data, meanwhile, find the
optimal strategy that (1) minimizes the empty trip cost for all
taxis (optimal matching), (2) finds the arrangement of minimum
number of taxis with/without minimizing the empty trip cost
(trip integration).

A. Results for Optimal Matching

Since the real world taxi data reveal an inefficient driver-
passenger matching strategy, although optimal matching is ap-
plicable to real-world situations, it is not appropriate to directly
implement the optimal matching on the observed data for a
large time interval. This is because that the optimal matching
rapidly fills up the passenger demand, leaving behind a system
with excessive amount of unmatched taxis that significantly

Fig. 6. Optimal matching results for different time of the day and days of
the week (8:00–8:20,12:00–12:20, and 18:00–18:20 on Wednesday, Friday and
Saturday). (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

deviates from the observed taxi service system. In real world
settings, these unmatched taxis could serve other potential trips,
however, such trip information is not recorded in the data.
Thus to evaluate the performance of the optimal matching,
an experiment is carried out using actual taxi trip data from
NYC on three short time periods (8:00–8:20, 12:00–12:20,
18:00–18:20) on Wednesday, Friday and Saturday of the tested
week, which covers both the morning peak and evening peaks.
The length of time intervalΔT is set to 5 minutes, which results
in 4 consecutive time intervals in each time period.

The experiment results for optimal matching are presented
in Fig. 6. From the optimal matching results, significant re-
ductions are achieved in all time periods and scenarios. It is
observed that the total taxi idle time (Scenario 1) can be reduced
in the range of 78% to 90%, and the total empty trip distance
(Scenario 2) can be reduced between 60% and 87%. For
Scenario 3, in which the loss of revenue computation involves
both the taxi idle time and empty trip distance, the reduction
is observed to be around 66% to 82%. The results indicate that
taxi drivers spend a significant amount of excessive time and
travel distances in the road network looking for passengers,
and a better scheduling and coordination for taxi-passenger
matching can reduce taxi idle time and empty trip distance to
a great extent. Apparently, the optimal matching strategy can
greatly enhance the level of taxi service by reducing the waiting
time for passengers and taxi drivers. The huge gap between
the empty trips traveled in the actual taxi service system and the
theoretical optimum uncovers the significant loss caused by the
asymmetric information between taxi drivers and passengers.
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Fig. 7. Number of taxis required to satisfy all trips observed in data. (a) Trip
integration results for Wednesday. (b) Trip integration results for Friday.
(c) Trip integration results for Saturday.

B. Results for Trip Integration

For the experiments on trip integration, we consider the
length of time interval ΔT = 10 min and test both unweighted
and weighted trip integration on the entire selected Wednesday,
Friday and Saturday data. Fig. 7 shows the number of taxis
required to serve all trips observed in data for both unweighted
and weighted cases in different scenarios. As expected, the
unweighted trip integration yields the least amount of required
taxis. The results show that for most cases, only 2/3 of the
observed taxis are sufficient to satisfy all the trips in the data.
The whole system output (served trips) can be greatly boosted

if all taxis are fully utilized using an optimal trip integration
strategy. For weighted trip integration, the results suggest that
the number of taxis required for Scenario 1 and 3 are only
slightly higher than unweighted case. The strategy that mini-
mizes matching cost is advantageous to provide drivers with
necessary information and achieves the greatest time saving
during the period. While Scenario 2 requires more number of
taxis, it is still capable of saving about 1/4 of total taxis. The
higher number of taxis needed in Scenario 2 is probably due to
the fact that taxi drivers are more likely to roam near the latest
drop off location. When the idle time of the empty trip is not
considered, the weighted trip integration is more likely to assign
original taxi to each trip, which leads to lower performance
compared with the other 2 scenarios.

The average matching cost from the actual taxi service
system in NYC and the weighted trip integration are compared
on the three tested days (Fig. 8). It is found that for all time
periods and scenarios, the average matching cost from weighted
trip integration is only about half of the actual average matching
cost, even though fewer taxis are used to serve the same amount
of trips in the optimal system. The reduction can be even more
significant in some time periods such as from 10:00–18:00,
when both taxi supply and passenger demand are high. The
average matching costs of both the actual system and the
system using weighted trip integration are much higher in late
night (after 22:00) and early morning (before 6:00) compared
with other time periods. This is mainly due to relatively fewer
number of taxis and passenger trip demand during these time
periods, which introduce unavoidable large empty trip cost
(matching cost) for both actual system and the optimal system.

What is interesting lies in the difference of the results be-
tween the actual system and the optimal system beyond the
previous time periods. Here we refer to the time periods as sta-
ble regions, which is 9:00–20:00 for weekdays and 10:00–21:00
for weekend. The stable regions are illustrated as the regions
between the two vertical dash lines in Fig. 8. The average
matching costs of weighted trip integration remain low and
stable in all test cases, and converge to very similar values
regardless of the tested days. For example, for Scenario 1, the
average matching costs stabilize at around 85 s; for Scenario 2,
they stabilize at 0.34 km and for Scenario 3, this value is about
$0.8. On the other hand, the actual matching cost fluctuates
significantly, and has peaks around noon, when the number of
taxi is also high in actual system. This observation reveals the
existence of destructive competition in the taxi service system
in NYC. Given the same set of taxi trips, the average trip
matching costs in the stable region are observed to be stable
in the perfectly coordinated taxi service system (weighted trip
integration). The costs are barely affected by either the time
of the day or the day of the week. However, in the real
world system, the average matching costs oscillate drastically
within the stable region. Without proper information, it is
very likely that some drivers compete for limited passengers.
The consequence is that only few drivers effectively win the
business while the rest waste their time and fuels and have to
start over the passenger search. The phenomenon is especially
evident from 10:00–12:00 and 14:00–16:00, when there is less
passenger demand in the network. The results indicate the
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Fig. 8. Comparison of average matching costs for weighted trip integration. (a) Wednesday: Scenario 1. (b) Wednesday: Scenario 2. (c) Wednesday: Scenario 3.
(d) Friday: Scenario 1. (e) Friday: Scenario 2. (f) Friday: Scenario 3. (g) Saturday: Scenario 1. (h) Saturday: Scenario 2. (i) Saturday: Scenario 3.

existence of destructive competition deteriorates the overall
system performance of the current taxi service system in NYC.

C. Impacts of Choices on ΔT

As discussed previously, the length of the time interval ΔT
in optimal matching and trip integration affects the performance
of these two methods. Optimal matching generally requires a
smaller ΔT while trip integration needs a larger one. From
the optimization perspective, a larger ΔT will always lead
to greater reduction of objective function value, since more
trips are considered and optimized within each time period;
from operation perspective, smaller value of ΔT is desired
to avoid extra waiting time for users in each operation. To
evaluate the impact and trade-off of different values of ΔT on
optimal matching and trip integration, we conducted additional
experiments using data from Wednesday. For optimal matching,
ΔT values of 1 min, 2 min, 4 min, and 5 min are tested; whereas

for trip integration, we tested largerΔT values of 5 min, 7.5 min,
10 min, and 15 min.

The comparison of optimal matching results are presented
in Fig. 9. In the figures, TMCopt refers the total matching
cost from optimal matching, and TMCact refers the actual total
matching cost. For each time period, TMCact is the same for
different ΔT values, thus smaller TMCopt/TMCact suggests
greater reduction in total matching cost. As expected, the
results show that larger ΔT indeed leads to greater reduction
in terms of the total matching cost within each tested periods.
It is also observed that when the time interval becomes very
small (ΔT = 1), the reduction in total matching cost decreases
greatly especially for Scenario 2, which suggests the time
window might be too short to collect enough information for the
full utilization of taxis. However, when moderate length of time
interval is used ((ΔT = 2, 4 min), the differences in reductions
of total matching cost are small among results for different ΔT
values, which suggests the appropriateness of implementing
optimal matching using even smaller time interval size.
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Fig. 9. Optimal matching costs for different values of ΔT on Wednesday. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Fig. 10. Ratio of number of taxis required in unweighted trip integration versus
actual number of taxi observed for different values of ΔT on Wednesday.

For results of trip integration, the ratio of number of taxis
needed obtained from unweighted trip integration versus the
actual number of taxi in operation is plotted in Fig. 10. In
the figure, Nopt refers the total number of taxis obtained from
unweighted trip integration in each time period, Nact refers
the observed number of taxis in the actual system of the same
time period. Smaller Nopt/Nact indicates greater reduction in
unweighted trip integration. The results confirm the intuition
that greater ΔT value leads to more sufficient utilization of
taxis (lower number of taxis needed). However, unlike optimal
matching, the difference is larger in unweighted trip integration,
since the maximum difference of number of taxi used for ΔT =
5 min and ΔT = 15 min can be as high as 20%. Although
ΔT = 15 min leads to the best unweighted trip integration
performance, it is unrealistic to apply such long time interval
in real world operation, whereas the ΔT = 10 min tested in
previous sections provide a reasonable consideration in balanc-
ing operation delay and optimization performance. The pattern
of number of taxis needed from weighted trip integration is
very similar to Figs. 7 and 10, and the average matching cost
is similar to Fig. 8 regardless of the different value of ΔT . To
avoid repetition, these results from weighted trip integration are
not presented in this paper.

V. CONCLUSION

This paper presents the first study to quantify the efficiency
level of the taxi service system in New York City using a
real world large-scale taxi trip dataset. A hypothetical system-

wide recommendation mechanism is assumed that allow both
taxi drivers and passengers to share their trip information. Two
approaches, namely optimal matching and trip integration are
proposed to find the optimal strategy that minimizes the cost of
empty trips, and the number of taxis required to serve all ob-
served trips. The optimization problems in the two approaches
are transformed into equivalent graph problems and solved
using efficient polynomial time algorithms.

The results show that the optimal matching can reduce about
78% to 90% of the total taxi idle time, 60% to 87% of the total
empty trip distances, and 66% to 82% of the total revenue loss
of empty trips when different objectives are considered. For
trip integration, the results show that in most cases, two third
of all taxis are sufficient to satisfy all the trips observed in the
data. For weighted trip integration, the actual average matching
cost in terms of idle time, empty trip distance and revenue loss
can be reduced to half even when fewer taxis are used. The
existence of destructive competition in the taxi service system is
also observed by comparing the actual system and the perfectly
coordinated system governed by weighted trip integration. It
also reveals the fact that in a perfectly coordinate system, the
average matching costs remain almost the same in the stable
region regardless the different time of the day or the day in
the week.

The findings in this paper show that the actual taxi service
system in New York City is far from efficient. The lack of
sharing system-wide information between taxi drivers and pas-
sengers results in large amount of extra idle time and travel
distances spent on empty trips. Moreover, if such a system-
wide information sharing scheme exist, only 2/3 of the total
taxis could be sufficient to serve all observed trips, the taxi
shortage issue can be potentially resolved by better matching
and integrating taxi trips. A further implication from the re-
sults is related to an important question that many cities face:
should cities increase the existing number of taxis by adding
new licenses, thereby potentially worsening congestion or en-
couraging adopting new technologies that enable centralized
matching between taxis and passengers using globally shared
information to improve system efficiency? This study provides
an affirmative conclusion to the second option. Currently, this
study only focused on analyzing the taxi service system for
New York City, additional experiments can be conducted for
other cities when similar datasets become available. This will
further validate and show the applicability of the optimization
approaches developed in this paper.
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Our analysis also suggests an urgent need to adopt system
level thinking into current taxi recommendation and dispatch-
ing system design. The current decentralized taxi recommenda-
tion systems that involve a subset of all drivers and passenger
trips might benefit specific taxi drivers or passengers, however,
may not necessarily improve the entire system performance.
Some current taxi hailing apps can potentially make some
taxi trips exclusive, which under certain situation will worsen
the overall system performance. Future work can be done to
extend the two approaches considered in this paper, and develop
a taxi service recommendation and management system. To
make the proposed algorithms work under real world situations,
additional modules, such as path travel time estimation, and
consideration of the possible imperfect information of future
passenger demand need to be introduced. Furthermore, if the
fairness among taxis needs to be ensured, the proposed ap-
proaches can still be used by adding a positive penalization
term to the matching cost computation. The penalization term
is a monotonically increasing function of the number of trips
served by the taxi in the previous fixed length time period. Thus
taxi drivers serving too many trips will be penalized and certain
level of fairness can be guaranteed. All these aforementioned
improvements will contribute to building a centralized taxi
recommendation and management system that leads to a more
efficient taxi service system and a more sustainable urban
environment.
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