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a b s t r a c t

Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes
for monitoring the traffic state in an urban area. This paper presents a new descriptive
model for estimating hourly average of urban link travel times using taxicab origin–desti-
nation (OD) trip data. The focus of this study is to develop a methodology to estimate link
travel times from OD trip data and demonstrate the feasibility of estimating network con-
dition using large-scale geo-location data with partial information. The data, collected from
the taxicabs in New York City, provides the locations of origins and destinations, travel
times, fares and other information of taxi trips. The new model infers the possible paths
for each trip and then estimates the link travel times by minimizing the error between
the expected path travel times and the observed path travel times. The model is evaluated
using a test network from Midtown Manhattan. Results indicate that the proposed method
can efficiently estimate hourly average link travel times. This research provides new pos-
sibilities for fully utilizing the partial information obtained from urban taxicab data for
estimating network condition, which is not only very useful but also is inexpensive and
has much better coverage than traditional sensor data.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate estimation and prediction of urban link travel times are important for improving urban traffic operations and
identifying key bottlenecks in the traffic network. They can also benefit users by providing accurate travel time information,
thereby allowing better route choice in the network and minimizing overall trip travel time. However, to accurately assess
link travel times, it is important to have good real-time information from either in-road sensors such as loop detectors,
microwave sensors, or roadside cameras, or mobile sensors (e.g. floating cars) or Global Positioning System (GPS) devices
(e.g. cell phones). However, in most of these cases, only limited information is available related to speed or location, hence,
one has to develop appropriate methodologies to accurately estimate the performance metric of interest at the link, path or
network level.

In the last few years, there has been a growing trend of implementing GPS installed taxicabs in urban areas. While GPS-
equipped taxicabs have many advantages, including the ability to locate taxis and track lost packages, they also serve as use-
ful real-time probes in the traffic network. Taxis equipped with GPS units provide a significant amount of data over days and
months thereby providing a rich source of data for estimating network wide performance metrics. However, currently there
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are limited methodologies making use of this new source of data to estimate link or path travel times in the urban network.
Within this context, this paper proposes a new method for estimating hourly urban link travel times using large-scale taxi-
cab data with partial information. The taxicab data used in this research provides limited trip information, which only con-
tains the origin and destination location coordinates, travel time and distance of a trip. However, the extensive amount of
data records compensates for the incompleteness of the data and makes the link travel time estimation possible. A novel
algorithm for estimating the link travel times will be presented and tested in this paper using a test network in New York
City.
1.1. Related work

Previous research on urban link travel time estimation and prediction has largely relied on various data sources, including:
loop detectors (Coifman, 2002; Zhang and Rice, 2003; Oh et al., 2003; Wu et al., 2004), automated vehicle identification (AVI)
(Park and Rilett, 1998; Li and Rose, 2011; Sherali et al., 2006), video camera, Remote Traffic Microwave Sensors (RTMS) (Yeon
et al., 2008), and automated number plate recognition (Hasan et al., 2011). All of these data collection methods require install-
ing corresponding sensors to retrieve data. Therefore a large number of sensors are required to achieve a reasonable accuracy
level based on these data sources. The cost of installing and maintaining such a large number of sensors is prohibitive. Hence
predicting link travel times with reasonable accuracy and network coverage based on sensor data could be expensive.

On the other hand, there is a significant potential to use emerging large-scale data sources to estimate dynamic demand
and dynamic network conditions in urban areas. For instance, GPS devices in dedicated fleets of vehicles or in users’ mobile
phones can be viable sources of data for monitoring traffic in large cities (Herrera et al., 2010). Industry models, such as
Inrix,1 have also gained popularity in recent years where private entities install, collect, utilize and sell ‘‘large-scale’’ historical
traffic data from GPS-equipped vehicles or mobile phones. With an increasing amount of GPS data available from taxi, transit,
and mobile phones, a new option of using such large-scale decentralized data for link travel time estimation becomes realistic.
Herring et al. (2010) used GPS traces data from a fleet of 500 taxis in San Francisco, CA. to estimate and predict traffic conditions.
However, in this work, instead of link travel times, discrete traffic states were predicted. Zheng and Van Zuylen (in press) also
proposed an ANN model to estimate urban link travel times based on sparse probe vehicle data (e.g., GPS traces from GPS-
equipped vehicles or smartphones). Hunter et al. (2009) proposed a statistical approach for path and travel time inference using
GPS probe vehicle trajectory data. The GPS data used in their study has been recorded each minute, where the inferred path
consists of at most five link segments. This method is not applicable if the GPS data has a longer recording interval or only
has the starting and ending coordinates. Estimating link travel times from GPS data provides a much cheaper and a larger cov-
erage area in the urban network compared with approaches using fixed sensor data. However, all of the above mentioned ap-
proaches are only applicable for GPS trace data, in which the trajectories of vehicles are available. To the best of our knowledge,
there is no study found in literature that used OD level GPS data for urban link travel time estimation, even though extensive
amount of such less detailed data (e.g. taxicab data) is generated and recorded every day.
1.2. Background and objectives

In New York City, GPS devices are installed in each taxicab. The taxicab data is collected and archived by the New York
City Taxi and Limousine Commission (NYTLC), an agency that is responsible for all taxi related issues in New York City. The
New York City has the largest market for taxis in North America with 12,779 (in 2006) yellow medallion taxicabs serving
about 240 million passengers a year. The taxi service transports 25% of all fare-paying bus, subway, taxi and for-hire vehicle
passengers that are traveling within Manhattan (Schaller Consulting, 2006; King et al., 2012).

In this paper, data collected from New York City taxicabs is used to estimate the link travel times. The dataset pro-
vides an extensive amount of taxi trip data, which records the trip starting and ending geo-location, along with infor-
mation about trip distance, time and fare. Unlike the detailed GPS trajectory data used in previous studies, the dataset
only provides the trip origin and destination information (i.e. starting, ending location and time) without the exact tra-
jectory of the taxicab; only path travel time and distance are known. However, the advantage of the massive amount of
data (the number of observations recorded within a day range between 450,000 and 550,000) makes it possible to infer
the possible routes that the taxicab is taking and further, to estimate the link travel times in the New York City net-
work. There is potential bias associated with measuring network link travel times from taxis, as taxi drivers are just
one particular group of all drivers in the network. However, given the high penetration rate of taxicabs, it is reasonable
to assume that taxis are good probe vehicles and therefore taxi travel times are a good representation of the actual
network condition.

In this research we propose a methodology to estimate urban link travel times based on taxi GPS data that includes only
the information about the origin and destination of the trip and total travel time to reach the destination. The goal of this
study is to show the potential of using taxicab data as a complimentary data source in urban transportation operation
and management. The link travel times estimated from taxicabs provide an hourly aggregate measure of the urban network
condition, which can be fused with the information from other existing data sources such as fixed sensors in the future.
1 Inrix, Inc. http://www.inrix.com.
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The paper is organized as follows: the next section describes the methodological approach developed in the paper to esti-
mate link travel times; the subsequent sections present the test data and network, and the model results respectively. The
final section presents the concluding remarks.

2. Methodology

This section presents the proposed link travel time estimation model. We treat the path taken by a taxi as latent and de-
rive the expected path travel time as a summation of each of the probable path travel time multiplied by the probability of
taking that particular path. Link travel time estimation problem then becomes estimating the link travel times that minimize
the least square error between the observed and expected path travel times. An MNL model is embedded to compute the
probability that a taxi driver chooses a given path in the constructed reasonable path set, and the expected path travel time
is computed for each trip record. The data are first processed to run the model, which include two steps: data mapping and
constructing reasonable path set. The taxi trip origin and destination points are first mapped to the nearest links in the net-
work. Instead of using all possible paths between each origin and destination points, we use k-shortest path algorithm to
construct 20 shortest paths for each OD nodal pair of a trip, referred as the reasonable path set. The generated reasonable
path sets serve as the basis for the link travel time estimation process.

2.1. Link travel time estimation

Link travel times in the network are estimated by minimizing the least squared difference between expected path travel
times and the observed path travel times. We consider the actual path choice of the taxi as a latent variable and the link
travel times as the model parameters to be estimated, the expected path travel time for observation i, E(Yi|Ri) can be written
as:
2 Thi
EðYijRiÞ ¼
X
m2Ri

gmð~tÞPmð~t;d; hÞ ð1Þ
where Yi is the variable of path travel time for observation i; Ri is the set of possible paths of a OD trip observation i;~t is the
vector of link travel times; d is the path distance set for Ri; gmð~tÞ is the path travel time for path m; Pmð�Þ is the probability of
selecting path m; and h is a positive scale parameter.2

For a given path, the path distance is fixed, the variables to be estimated are the vector of link travel times~t and the scale
parameter h. Then, E(Yi|Ri) can be represented by a function of Ri;~t and h,
EðYijRiÞ ¼ f ðRi;~t; hÞ ð2Þ
The error between observed path travel time yi and expected path travel time E(Yi|Ri) is defined as the residual for observa-
tion i, which is:
ri ¼ yi � f ðRi;~t; hÞ ð3Þ
Link travel times are estimated by minimizing the square difference between the expected path travel times and the actual
path travel times observed in the data set D, defined as Sð~t; hÞ,
Sð~t; hÞ ¼
X
i2D

r2
i ¼

X
i2D

ðyi � f ðRi;~t; hÞÞ2 ð4Þ

~t ¼ arg min
~t

Sð~t; hÞ ð5Þ
2.2. Route choice model

Due to the absence of any information on the path taken by the taxicab drivers, the actual path needs to be inferred. Thus
a route choice model is developed to find the path choice of the taxicab drivers. Due to the lack of social or behavioral char-
acteristics of taxi drivers in the dataset, traditional econometric models cannot be estimated. Hence, we build the route
choice model using the limited cost variables from the dataset. We implement an MNL model to serve as the route choice
model and consider the trip cost Cm in terms of both trip time and distance. The route choice model is defined as
Pmð~t;d; hÞ ¼
e�hCmð~t;dmÞP
j2Ri

e�hCjð~t;djÞ
ð6Þ
The parameter h scales the perceived path cost. A large h indicates a small perception error, and drivers will tend to select the
path with minimum cost; while a small h suggests a large perception variance, larger cost path gets more probability of being
s will be further discussed in the route choice model.



Fig. 1. Fare-time-distance relationship.
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selected. In this model, h is estimated together with the link travel times, which captures the variation in drivers’ perceived
path cost in different time period and network conditions.

The path cost Cm can be assumed as a function of trip fare. This is based on the assumption that each driver minimizes
both trip time and distance, so that the driver can make more trips and thus make more revenue. We introduce a threshold
ratio when constructing the reasonable path sets to exclude the trips that violate the aforementioned route choice behavior
assumption. That is, if the taxi driver takes a much longer route to make more revenue in a single trip, then none of the paths
in the reasonable path set will fall within the threshold given the observed path distance. These records are removed from
the model estimation to ensure the input data matches with the route choice behavior assumption.

According to the taxicab fare rates provided by New York Taxi and Limousine Commission, the taxicab fare calculation
involves both trip time and distance.3 For standard city rate (taxi trips within Manhattan all follow this rate), fare (exclude
surcharge and tax) include $2.50 upon entry, and $0.5 for each additional unit. The unit fare is:

� One-fifth of a mile, when the taxicab is traveling at 6 miles an hour or more; or
� 60 s when not in motion or traveling at less than 6 miles per hour.
� The taximeter shall combine fractional measures of distance and time in accruing a unit of fare.

The taxi rate of fare suggests a linear relationship with trip time and distance. The actual fare-time-distance relationship
from the data is illustrated in Fig. 1. Considering the complicated traffic condition and fare calculating method in actual sit-
uations, a linear model for the trip fare-time-distance relationship estimated from the data is used rather than the rate of fare
provided by NYTLC:
3 Tax
fare ¼ b0 þ b1 � timeþ b2 � distance ð7Þ
The estimated coefficients of b0, b1 and b2 are listed in Table 1. The units for time and distance are minute and mile respec-
tively; the fare used in the calculation does not include surcharge and tax. The estimation result shows that time and dis-
tance are highly significant in determining the trip fare. The model has a R2 value of 0.99, suggesting that the data is well
fitted using this simple linear model. The path cost used in the route choice model is therefore modeled as:
Cmð~t;dmÞ ¼ b1 � gmð~tÞ þ b2 � dm ð8Þ
where dm is the distance for path m, and the path travel time of path m; gmð~tÞ is defined as
gmð~tÞ ¼ a1t0 þ a2tD þ
X
l2L

dmltl ð9Þ
where t0 is the travel time of the link where the trip starting point lies; tD is the travel time of the link where the trip ending
point lies; L is the set of the links; tl is the travel time of the link l; dml is the link-path incident relationship, 1 if link l is in path
m, 0 otherwise; and a1, a2 are the distance proportions.

The simple linear form of the path cost function is used for two reasons: (1) the linear fare-time-distance relationship is
supported by data, and distance and time are identified as significant factors that impact the trip fare; and (2) a simple form
of path cost function ensures the model is computationally tractable for large-scale input data and the short term link travel
icab rates from New York Taxi & Limousine Commission: http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml.

http://www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml


Table 1
Linear model for fare-time-distance relationship.

Coefficient Standard deviation P value

b0 (intercept) 2.143 0.00161 0.000
b1 (coefficient for time) 0.275 0.00021 0.000
b2 (coefficient for distance) 1.563 0.00058 0.000
Number of observations 415,561
R-squared 0.99
Adjusted R-squared 0.99
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time estimation purpose. The constant term is not included since this common component cancels out in the MNL model.
Further, as the starting and ending points lie within the starting and ending links, a taxi only experiences a part of the total
link travel times to traverse those links. In this study, the proportion of this part of link travel time to the total link travel
time is assumed to be the distance proportions a1 and a2 defined in the data mapping section.

2.3. Data mapping

It is common in urban environments such as New York City that taxicabs often travel in the GPS shadow of tall buildings
causing errors in the GPS data. Thus a data mapping process is introduced to pre-process the raw GPS data. There are two
purposes in this step: first, to map the data to nearest links in the road network to reduce GPS errors; second, to match the
starting and ending points to the actual road network and transform the raw data into usable data for network level analysis.

Fig. 2 illustrates the data mapping procedure. The raw origin and destination points (black points in Fig. 2) are mapped to
the perpendicular foot of the nearest link (blue points in Fig. 2), and the new points are then used in the later analysis. The
locations (represented by distance ratio between two endpoints of a link) of the new points on the link are also computed to
calculate accurate k-shortest path distance in later step.

The new origin and destination points correspond to four endpoints of two links. In big cities like New York, a great pro-
portion of the links in the urban grid network are one-way streets. For origin and destination points that lie on one-way
streets, the actual two intermediate nodes in abovementioned four endpoints are easily identified given the directional infor-
mation of the link. For any point lies on the two-way street, both the two endpoints of this link are used as intermediate
origin/destination nodes for this record. All the combination of the intermediate origin and destination nodes and the cor-
responding shortest path sets are then used to generate the reasonable path sets for this record. These identified interme-
diate points serve as intermediate origin and destination nodes. The distance proportion to the total length of the link from
the new origin point to the intermediate origin node is defined as a1, and the distance proportion from the new destination
point to the intermediate destination node is defined as a2. For points lying on the two-way streets, different combination of
a1 and a2 are allowed for the same record, depending on the combination of intermediate origin/destination node.

2.4. Constructing reasonable path sets

Given the origin and destination of a taxi trip, the number of paths in urban network between the origin and destination
are potentially large, especially for downtown grid networks of big cities. Since the actual path taken by a taxi driver is
Fig. 2. Illustration of data mapping.
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unknown, an important sub-question of the analysis is to infer the possible path set of a given taxi trip. Considering the large
number of observations available in a large network, the overall search space for the possible path sets are huge. It is nec-
essary to reduce the size of the possible path sets. In this study, Yen’s k-Shortest Path algorithm (Yen, 1971) (k = 20) is used
to generate the initial path sets, and the trip distance recorded in the data is then used to eliminate unreasonable paths. Only
the paths that do not have excessively high or low lengths compared to the observed taxi trip distance will be used.

Because the trip distance recorded in the data is not very accurate (only accurate to 0.1 mile), a threshold ratio of 15–25%
for weekday, and 20–25% for weekend (both upper and lower) is used, depending on the amount of data available during one
hour. The threshold ratio is used to filter out the unreasonable paths whose measured lengths deviate significantly from the
recorded trip distance.

2.5. Solution approach

To solve this non-linear least square problem, the Levenberg–Marquardt (LM) method (Nocedal and Wright, 2006; Fletch-
er, 1971) is used. The Levenberg–Marquardt method is a widely used optimization algorithm in solving least square curve
fitting and nonlinear programming problems. It outperforms the simple gradient decent method and the well-known Gauss–
Newton (GN) methods in a wide variety of problems. The traditional Gauss–Newton method uses a line-search method,
which is computationally expensive for solving this problem, since the objective function is huge. The updating method
in Gauss–Newton method is similar to Newton’s method, which has numerical issues when the approximated Hessian is
near singular and easily fails to converge to the optima if improper initial value is used. Levenberg–Marquardt method on
the other hand, uses a trust-region strategy instead of the line search method, which determines the step size before the
updating step. The different Hessian approximation method used in LM also helps to ensure the positive definiteness of
the approximated Hessian in each iteration. This results in a more robust performance, which means that in many cases
Levenberg–Marquardt method finds a solution even if it starts very far off the final minimum. It is showed in Nocedal
and Wright (2006) that Levenberg–Marquardt enjoys rapid local convergence near optima, and under ideal cases, the con-
vergence is actually quadratic.

For simplicity, define
pmð~t; hÞ ¼ ehð�b1 �gmð~tÞ�b2 �dmÞ ð10Þ
Thus we can write the denominator of Eq. (6) as:
SRi
ð~t; hÞ ¼

X
j2Ri

ehðb1 �gjð~tÞ�b2 �djÞ ¼
X
j2Ri

pjð~t; hÞ ð11Þ
Then, the expected path travel time can be written as,
EðYijRiÞ ¼ f ðRi;~t; hÞ ¼
X
m2Ri

gmð~tÞ
pmð~t; hÞ
SRi
ð~t; hÞ

ð12Þ
Define
Jik ¼
@f ðRi;~t; hÞ

@tk
; k ¼ 1;2; . . . ;N

JiNþ1 ¼
@f ðRi;~t; hÞ

@h

ð13Þ
Thus J forms a ND � (N + 1) matrix, where ND is the number of observations in data set D, N is the number of links in the
network. The vector of link travel times and the scale parameter h are updated iteratively using
~t �~tkþ1 ¼~tk þ~pðkÞt

h � hkþ1 ¼ hk þ pðkÞh

ð14Þ
~pðkÞ ¼ ð~pðkÞ
T

t ; pðkÞh Þ
T is the update direction in kth iteration, which is obtained by solving the following linear system,
ðJðkÞT JðkÞ þ kIÞ~pðkÞ ¼ JðkÞT ri ð15Þ
where J(k)TJ(k) is the first order approximation of the Hessian matrix of the problem, and k is referred to as damping factor,
which adjusted at each iteration under a trust-region strategy. A modified Levenberg–Marquardt method replaces the iden-
tity matrix I with the diagonal matrix with the diagonal element of J(k)TJ(k), which shows as follows
ðJðkÞT JðkÞ þ kdiagðJðkÞT JðkÞÞÞ~pðkÞ ¼ JðkÞT ri ð16Þ
This study uses the modified version of Levenberg–Marquardt method, as it avoids slow convergence in the direction of
small gradient. Detailed description of the updating scheme of damping factor k and implementation is discussed by Fletcher
(1971).

https://www.researchgate.net/publication/227443599_Finding_the_K_Shortest_Loopless_Paths_in_a_Network?el=1_x_8&enrichId=rgreq-417fe06a-6003-4631-88f3-62b40d3a62c6&enrichSource=Y292ZXJQYWdlOzI0NDk4ODMwNztBUzoxNzU4MzgzMDk5MjA3NjhAMTQxODkzNDUyODc0Ng==


X. Zhan et al. / Transportation Research Part C 33 (2013) 37–49 43
In the above equations, Jik is computed as
Table 2
Test res

Initia

10a

8
12
8–12
8–12
6–14
6–14

a Net
Jik ¼
X
m2Rr

pmð~t; hÞSRr ð~t; hÞ
@gmð~tÞ
@tk
½1� b1hgmð~tÞ� � gmð~tÞpmð~t; hÞ

@SRr ð~t;hÞ
@tk

½SRr ð~t; hÞ�
2

8<
:

9=
; ð17Þ
in which k = 1, 2, . . . , N, and for k = N + 1, the JiN+1 is defined as
JiNþ1 ¼ �
X
m2Rr

pmð~t; hÞSRr ð~t; hÞ
SRr ð~t; hÞ

b1gmð~tÞ þ b2dm þ
@SRr ð~t;hÞ

@h

SRr ð~t; hÞ

" #
ð18Þ
@gmð~tÞ
@tk

, and @SRr ð~t;hÞ
@tk

, are defined as follows:
@gmð~tÞ
@tk

¼

a1 if tk 2 LO

a2 if tk 2 LD

dmk ¼
1 if link k on path m

0 if link k not on path m

�
8>>><
>>>:

ð19Þ
@SRr ð~t; hÞ
@tk

¼ �b1

X
j2Rr

pjð~t; hÞ
@gjð~tÞ
@tk

" #
ð20Þ
@SRr ð~t; hÞ
@h

¼ �
X
j2Rr

½b1gjð~tÞ þ b2dj�pjð~t; hÞ ð21Þ
One can observe that the problem is not convex and hence may have multiple local optima. A proper initial point is needed to
ensure the convergence to the most probable solution. A preprocessing step is used to search for the network wide optimal
mean speed. In this step, all the links in the network are assumed to have the same mean speed vm, thus a 1-dimensional
search algorithm can be implemented to find the vm that minimizes the objective function. The obtained mean speed is then
used to calculate the initial values of the link travel times. In Table 2, data from 3/15/2010 (Monday) 21:00–22:00 are used to
test the choice of different initial link speeds for link travel time estimation. The result shows that using the network wide
optimal mean speed as an initial point yields the lowest objective value and RMSE, which suggests that the preprocessing
step is an effective approach of finding desirable link travel time estimates.
3. Testing data and network

The data used in this research was collected by New York City Taxi and Limousine Commission on a trip by trip basis. The
data records each trip origin and destination GPS coordinate, trip distance and duration, fare, payment method, and other
related information. The data set contains data from February 2008 to November 2010. In this study, a week’s data (from
3/15/2010 to 3/21/2010) is selected to test the proposed method.

A small region in the southeast of Central Park of Midtown Manhattan is selected to serve as the study region, which is a
1370 m � 1600 m rectangle area. The corresponding network is also extracted (Fig. 3), which contains 193 nodes and 381
directed links. The network has 331 road segments and only 50 of them are two-way streets. From the original data set,
all the records that fall within the region are extracted. Fig. 4 presents the number of observations inside the study region
in a typical weekday (3/15/2010, Monday) and weekend (3/20/2010, Saturday) respectively. We obtain as many as 1000
observations in one hour on a typical weekday (Monday) and about 500 observations in one hour in a weekend (Saturday)
inside the study region.
ults for different choices of model initial values.

l speed (mph) Objective function value Iteration used RMSE MAPE (%)

779.830 20 1.372 21.87
1215.410 17 1.713 29.30

783.143 16 1.375 21.52
Uniformly distributed 801.487 20 1.391 22.49
Uniformly distributed 805.075 16 1.394 22.68
Uniformly distributed 805.146 27 1.395 22.55
Uniformly distributed 807.044 23 1.396 22.35

work wide optimal mean speed.



Fig. 3. Test network of the study region: Midtown Manhattan.
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In this study, the data is split into hourly intervals, and link travel times are estimated using the data from the corre-
sponding hour. Although traffic conditions can change rapidly during one hour, a shorter time period will not guarantee a
good statistical significance due to the insufficient amount of observations given the limited information in the data.
4. Model results

To implement the model discussed in the previous section, a Matlab code is written using Parallel Computing Toolbox. A
k-shortest path set is required to be computed for each nodal pair in the network and this process takes a considerable
amount of time. But once the process is complete, the path sets are stored and needs no further computation. The steps
of data mapping and constructing reasonable path sets take little time to complete, as they make use of the information from



Fig. 4. Histogram for number of hourly observations in the study region.
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already computed k-shortest path sets of the network. The Levenberg–Marquardt method provides good convergence prop-
erties, and the entire optimization process can be efficiently solved within 15 min using an Intel i7 CPU laptop. The compu-
tation time can be further reduced by using Matlab C/MEX code or a more powerful computer.

Link travel times for four time periods (9:00–10:00, 13:00–14:00, 19:00–20:00, and 21:00–22:00) in a day are estimated
based on a week’s Taxi GPS data (from 3/15/2010 to 3/21/2010). The time period from 9:00 to 10:00 represents the morning
peak period, as the highest number of taxi trips are observed in this period on weekdays; while 21:00–22:00 is tested for the
off-peak hour situation. A lower bound of speed (one mile per hour) is used to ensure that we do not obtain unreasonably
large travel times; an upper bound of speed (30 miles per hour) is used as the free flow speed to set a lower bound for the
estimated link travel times. We use the link speeds instead of the link travel times to give a more intuitive representation of
the link travel time estimation results. Fig. 5 presents the estimated link speeds and correlation plots of observed and esti-
mated path travel times for Monday, Tuesday, Wednesday and Saturday, and the results for Thursday, Friday and Sunday are
attached in Fig. 6 in the Appendix A.

Based on model estimation results, for weekdays, it is found that most of the links have speeds between 4 and 8 miles/h in
the 9:00–10:00 morning peak hour. During the 13:00–14:00 period, the distribution of speed is slightly improved and peaks
around 7 miles/h. In the 19:00–20:00 period, the mean speed is observed between 6 and 8 miles/h. However, in the 21:00–
22:00 off-peak period, a great number of links are observed to have speeds around 10 miles/h. In contrast, during weekends,



Fig. 5. Histogram of estimated link speed and correlation plot of observed and estimated path travel time for Monday, Tuesday, Wednesday and Saturday
(inside plot, X-axis: observed path travel time (min), Y-axis: estimated path travel time (min)).
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a relatively higher average speed (8–10 miles/h) is observed during 9:00–10:00 in the morning, and relatively lower average
speed (about 8 miles/h) is observed during 19:00–20:00 pm period. These values are consistent with a previous study on
New York City traffic speeds where it is reported that on weekdays in the daytime, in east Midtown, average traffic speed
is 6.3 mph whereas on Saturdays, the average speed is about 8.5 mph (Grynbaum, 2010).

The root mean square Error (RMSE) and mean absolute percentage error (MAPE) are used to evaluate the estimation
results:
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðTPr

i � TOb
i Þ

2

r
ð20Þ

MAPE ¼ 1
n

Xn

i¼1

TPr
i � TOb

i

TOb
i

�����
������ 100% ð21Þ
where Tpr
i is the model estimated trip path travel time; Tob

i is the observed trip path travel time; and n is the number of
observations.

The model estimation errors and the estimated values of the scale parameter h are presented in Table 3. As showed in the
result, except for 2 time intervals (Wednesday 9:00–10:00 and 13:00–14:00), all the link travel time estimation results have
MAPE below 30%, and for some off-peak hours, e.g. 21:00–22:00 pm, the MAPE is only around 22%. It is noticeable that
Wednesday 9:00–10:00 and 13:00–14:00 have much larger errors and lower link travel speeds compared with other days.
It is found that this Wednesday (3/17/2010) happened to have St. Patrick’s Day Parade. The parade was from 8:00 to 15:00
and marched down the 5th street (contained in the test network). Few roads were temporarily closed and huge crowds were
drawn along the parade routes. This caused huge disruption in traffic network and explained the high estimation errors on
Wednesday. It is also observed that after the parade ended, the estimation results for 19:00–20:00 and 21:00–22:00 restore
to normal condition, which have RMSE under 2.5 min and MAPE under 30%. It is found that in congested time period (e.g.
9:00–10:00 on weekdays), the results have relatively higher estimation errors. This could be the effect of the rapid changes
in the network condition, since the model estimates hourly average link travel times. The link speed estimates also confirm
that in high estimation error time period, a greater proportion of links have relatively lower traveling speed.

The estimation results for the scale parameter h show relatively large variance in drivers’ route choice behaviors. All the
estimated values for h are smaller than 1.2, and very small h (0.003) is observed. The change in h reflects the relatively large



Table 3
Model estimation error and estimated value for the scale parameter h.

Day Error Time period

9:00–10:00 13:00–14:00 19:00–20:00 21:00–22:00

Monday RMSE (min) 2.614 1.981 1.937 1.372
MAPE (%) 29.51 24.22 26.27 21.87
h 0.165 0.063 0.435 0.068

Tuesday RMSE (min) 2.461 2.302 1.827 1.437
MAPE (%) 29.63 25.59 23.33 22.20
h 1.082 0.049 0.329 0.003

Wednesday RMSE (min) 3.827a 3.216a 2.180 1.691
MAPE (%) 41.32a 34.97a 28.73 24.40
h 1.030 0.867 1.153 0.539

Thursday RMSE (min) 2.468 2.699 2.490 1.382
MAPE (%) 27.28 27.92 28.54 21.05
h 0.469 0.037 0.264 0.499

Friday RMSE (min) 2.260 2.179 1.692 1.334
MAPE (%) 27.76 27.04 25.17 22.26
h 0.075 0.010 0.717 0.245

Saturday RMSE (min) 1.034 1.690 1.839 1.584
MAPE (%) 16.84 24.58 27.14 21.61
h 0.469 0.287 0.081 0.087

Sunday RMSE (min) 2.041 1.518 1.395 1.160
MAPE (%) 25.44 23.70 22.72 19.87
h 0.166 0.239 0.190 0.615

a Traffic disturbance caused by Patrick’s Day Parade.
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variance in taxi drivers’ route choice behaviors in different time periods, days and network conditions. The wide range for the
estimated values of h (0.003–1.153) could be the result of several reasons. One plausible explanation could be that as traffic
conditions change in different time periods of a day, taxi drivers may have different levels of perception error, which are
reflected in their route choice behaviors. However h only considers the overall variance in taxi drivers’ perceived path costs
and treats all taxi drivers as homogeneous individuals, which does not capture the behavioral heterogeneity among the taxi
drivers.

Three consecutive Mondays in 2009 (2009/9/14, 2009/9/21, 2009/9/28) are also investigated to see if repeatability exist
across weeks (due to space limitation, these results are not included). However, no significant pattern is found in terms of
link speed profile and travel time variation during a day. The findings of the three Mondays agrees with the general pattern
found on weekdays discussed above, but variation in terms of the distribution of link travel speeds is also observed, and no
conclusive inference can be made across weeks.

In this model, intersection delay is not modeled due to the lack of detailed vehicle trajectory information in the data. In
the testing network, most of the links have lengths ranging from 80 to 300 m; assuming the vehicle traveling at a speed of
8 miles per hour, a great number of links will have a travel time less than 1 min. However, the intersection delay at a traffic
signal sometimes can be greater than the link travel time itself. In a 10 min trip, it is very likely to have at least 2 min of
intersection delay on average, which partly explains the RMSE of around 2 min in the model. This is a potential source of
errors of the model. The intersection delay causes inconsistency in the link travel time estimation and leads to overestima-
tion of actual link travel times. However, given only origin and destination information provided in the data, modeling inter-
section delay separately will introduce excessive complexity in travel time estimation, which makes the short term
estimation intractable. Also, there is no guarantee on the quality of the estimated intersection delay, since too little informa-
tion is available to separate the intersection delay from the total link travel time. Thus given the incompleteness of the data,
we combine the intersection delay into the link travel times and focus on estimation the hourly average link travel times.

Furthermore, because the link travel times are estimated as hourly average values, variations in link travel times within
one hour can introduce errors in the model estimation (Fosgerau and Fukuda, 2012). The heterogeneity among the drivers’
behaviors (e.g. some drivers prefer to drive fast and choose the shortest path, some drivers prefer to drive at a moderate
speed and take a relatively long path, etc.) may also contribute to the estimation errors. Certain trips are observed to take
as much as 20 min in the testing network, which involve a lot of uncertainty in path choices, leading to some errors in esti-
mation results as well.

5. Discussion and conclusion

In this study, a new model is proposed to use the limited information provided in the taxi GPS data to estimate urban link
travel times. The taxicab data used in this study lacks the information of actual paths taken by the taxi drivers. The proposed
model treats the path taken as latent, constructs a reasonable path set, formulates an MNL model to compute the probability
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of a path being taken by the driver, and estimates the link travel times by optimizing a nonlinear least square problem. Mod-
el estimation results indicate that the proposed method can efficiently estimate hourly average link travel times.

It is recommended to split the whole urban region into smaller zones (e.g. 1.5 km � 1.5 km) to implement this model,
because of the following reasons: (1) Larger zones contain longer trips, which involve more uncertainties in path choices,
thus long trips are less reliable in the link travel time estimation given this type of data. (2) Preparing the k-shortest path
set for all the nodal pairs in a large network is computationally expensive. The number of nodal pairs grows as n2 as the num-
ber of nodes in the network, and a greater k value is also needed to ensure a good representation of reasonable paths. By
reducing the zone size, we can ensure the computational tractability for short term link travel time estimation. (3) The data
provides a large number of records in an hour even in a 1.37 km � 1.6 km size zone, thus the amount of data is enough for
the model.

This model can be further verified using the actual trajectory information of the taxi trips. Although this information has
been collected by NYLTC, it is currently unavailable to the researchers. The model is also applicable to use trajectory data
(treating two intermediate trajectory points as origin and destination point). The accuracy of the model can be improved
with more detailed data and greater number of observations.
Fig. 6. Histogram of estimated link speed and correlation plot of observed and estimated path travel time for Thursday, Friday and Sunday (inside plot, X-
axis: observed path travel time (min), Y-axis: estimated path travel time (min)).
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In this model, only the data in the current time period are used in the estimation, and historical data are not used. Further
research can be done to investigate a hybrid approach of using historical data as well as optimizing current estimation error.
Another research direction in the future is to improve the route choice model to account for more realistic route choice
behaviors of the taxi drivers. The current route choice model only considers drivers who minimize trip time and distance
in each trip, and records that do not comply with this assumption are filtered out. A more comprehensive route choice model
would utilize more data records and provide less estimation bias. Furthermore, intersection delays are important causes of
irregularity of link travel times, which may lead to bias in the estimated travel times. Future research can be done to incor-
porate the effects of intersection delays in the link travel time estimation, and thus improve the estimation accuracy. All
these efforts would provide a more accurate and reliable way to estimate urban network conditions using the partial infor-
mation provided by the taxicab data.
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